Metamath Proof Explorer


Theorem cocan1

Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion cocan1 F:B1-1CH:ABK:ABFH=FKH=K

Proof

Step Hyp Ref Expression
1 fvco3 H:ABxAFHx=FHx
2 1 3ad2antl2 F:B1-1CH:ABK:ABxAFHx=FHx
3 fvco3 K:ABxAFKx=FKx
4 3 3ad2antl3 F:B1-1CH:ABK:ABxAFKx=FKx
5 2 4 eqeq12d F:B1-1CH:ABK:ABxAFHx=FKxFHx=FKx
6 simpl1 F:B1-1CH:ABK:ABxAF:B1-1C
7 ffvelcdm H:ABxAHxB
8 7 3ad2antl2 F:B1-1CH:ABK:ABxAHxB
9 ffvelcdm K:ABxAKxB
10 9 3ad2antl3 F:B1-1CH:ABK:ABxAKxB
11 f1fveq F:B1-1CHxBKxBFHx=FKxHx=Kx
12 6 8 10 11 syl12anc F:B1-1CH:ABK:ABxAFHx=FKxHx=Kx
13 5 12 bitrd F:B1-1CH:ABK:ABxAFHx=FKxHx=Kx
14 13 ralbidva F:B1-1CH:ABK:ABxAFHx=FKxxAHx=Kx
15 f1f F:B1-1CF:BC
16 15 3ad2ant1 F:B1-1CH:ABK:ABF:BC
17 16 ffnd F:B1-1CH:ABK:ABFFnB
18 simp2 F:B1-1CH:ABK:ABH:AB
19 fnfco FFnBH:ABFHFnA
20 17 18 19 syl2anc F:B1-1CH:ABK:ABFHFnA
21 simp3 F:B1-1CH:ABK:ABK:AB
22 fnfco FFnBK:ABFKFnA
23 17 21 22 syl2anc F:B1-1CH:ABK:ABFKFnA
24 eqfnfv FHFnAFKFnAFH=FKxAFHx=FKx
25 20 23 24 syl2anc F:B1-1CH:ABK:ABFH=FKxAFHx=FKx
26 18 ffnd F:B1-1CH:ABK:ABHFnA
27 21 ffnd F:B1-1CH:ABK:ABKFnA
28 eqfnfv HFnAKFnAH=KxAHx=Kx
29 26 27 28 syl2anc F:B1-1CH:ABK:ABH=KxAHx=Kx
30 14 25 29 3bitr4d F:B1-1CH:ABK:ABFH=FKH=K