| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1fzgsumd.p |
|
| 2 |
|
coe1fzgsumd.b |
|
| 3 |
|
coe1fzgsumd.r |
|
| 4 |
|
coe1fzgsumd.k |
|
| 5 |
|
coe1fzgsumd.m |
|
| 6 |
|
coe1fzgsumd.n |
|
| 7 |
|
raleq |
|
| 8 |
7
|
anbi2d |
|
| 9 |
|
mpteq1 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
10
|
fveq2d |
|
| 12 |
11
|
fveq1d |
|
| 13 |
|
mpteq1 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
12 14
|
eqeq12d |
|
| 16 |
8 15
|
imbi12d |
|
| 17 |
|
raleq |
|
| 18 |
17
|
anbi2d |
|
| 19 |
|
mpteq1 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
20
|
fveq2d |
|
| 22 |
21
|
fveq1d |
|
| 23 |
|
mpteq1 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
22 24
|
eqeq12d |
|
| 26 |
18 25
|
imbi12d |
|
| 27 |
|
raleq |
|
| 28 |
27
|
anbi2d |
|
| 29 |
|
mpteq1 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
fveq2d |
|
| 32 |
31
|
fveq1d |
|
| 33 |
|
mpteq1 |
|
| 34 |
33
|
oveq2d |
|
| 35 |
32 34
|
eqeq12d |
|
| 36 |
28 35
|
imbi12d |
|
| 37 |
|
raleq |
|
| 38 |
37
|
anbi2d |
|
| 39 |
|
mpteq1 |
|
| 40 |
39
|
oveq2d |
|
| 41 |
40
|
fveq2d |
|
| 42 |
41
|
fveq1d |
|
| 43 |
|
mpteq1 |
|
| 44 |
43
|
oveq2d |
|
| 45 |
42 44
|
eqeq12d |
|
| 46 |
38 45
|
imbi12d |
|
| 47 |
|
mpt0 |
|
| 48 |
47
|
oveq2i |
|
| 49 |
|
eqid |
|
| 50 |
49
|
gsum0 |
|
| 51 |
48 50
|
eqtri |
|
| 52 |
51
|
fveq2i |
|
| 53 |
52
|
a1i |
|
| 54 |
53
|
fveq1d |
|
| 55 |
|
eqid |
|
| 56 |
1 49 55
|
coe1z |
|
| 57 |
3 56
|
syl |
|
| 58 |
57
|
fveq1d |
|
| 59 |
|
fvex |
|
| 60 |
|
fvconst2g |
|
| 61 |
59 4 60
|
sylancr |
|
| 62 |
54 58 61
|
3eqtrd |
|
| 63 |
|
mpt0 |
|
| 64 |
63
|
oveq2i |
|
| 65 |
55
|
gsum0 |
|
| 66 |
64 65
|
eqtri |
|
| 67 |
62 66
|
eqtr4di |
|
| 68 |
67
|
adantr |
|
| 69 |
1 2 3 4
|
coe1fzgsumdlem |
|
| 70 |
69
|
3expia |
|
| 71 |
70
|
a2d |
|
| 72 |
|
impexp |
|
| 73 |
|
impexp |
|
| 74 |
71 72 73
|
3imtr4g |
|
| 75 |
16 26 36 46 68 74
|
findcard2s |
|
| 76 |
75
|
expd |
|
| 77 |
6 76
|
mpcom |
|
| 78 |
5 77
|
mpd |
|