Metamath Proof Explorer


Theorem coeq0i

Description: coeq0 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion coeq0i A:CDB:EFCF=AB=

Proof

Step Hyp Ref Expression
1 frn B:EFranBF
2 1 3ad2ant2 A:CDB:EFCF=ranBF
3 sslin ranBFdomAranBdomAF
4 2 3 syl A:CDB:EFCF=domAranBdomAF
5 fdm A:CDdomA=C
6 5 3ad2ant1 A:CDB:EFCF=domA=C
7 6 ineq1d A:CDB:EFCF=domAF=CF
8 simp3 A:CDB:EFCF=CF=
9 7 8 eqtrd A:CDB:EFCF=domAF=
10 4 9 sseqtrd A:CDB:EFCF=domAranB
11 ss0 domAranBdomAranB=
12 10 11 syl A:CDB:EFCF=domAranB=
13 12 coemptyd A:CDB:EFCF=AB=