Metamath Proof Explorer


Theorem coeq0i

Description: coeq0 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion coeq0i A : C D B : E F C F = A B =

Proof

Step Hyp Ref Expression
1 frn B : E F ran B F
2 1 3ad2ant2 A : C D B : E F C F = ran B F
3 sslin ran B F dom A ran B dom A F
4 2 3 syl A : C D B : E F C F = dom A ran B dom A F
5 fdm A : C D dom A = C
6 5 3ad2ant1 A : C D B : E F C F = dom A = C
7 6 ineq1d A : C D B : E F C F = dom A F = C F
8 simp3 A : C D B : E F C F = C F =
9 7 8 eqtrd A : C D B : E F C F = dom A F =
10 4 9 sseqtrd A : C D B : E F C F = dom A ran B
11 ss0 dom A ran B dom A ran B =
12 10 11 syl A : C D B : E F C F = dom A ran B =
13 12 coemptyd A : C D B : E F C F = A B =