Metamath Proof Explorer


Theorem connima

Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses connima.x X=J
connima.f φFJCnK
connima.a φAX
connima.c φJ𝑡AConn
Assertion connima φK𝑡FAConn

Proof

Step Hyp Ref Expression
1 connima.x X=J
2 connima.f φFJCnK
3 connima.a φAX
4 connima.c φJ𝑡AConn
5 eqid K=K
6 1 5 cnf FJCnKF:XK
7 2 6 syl φF:XK
8 7 ffund φFunF
9 7 fdmd φdomF=X
10 3 9 sseqtrrd φAdomF
11 fores FunFAdomFFA:AontoFA
12 8 10 11 syl2anc φFA:AontoFA
13 cntop2 FJCnKKTop
14 2 13 syl φKTop
15 imassrn FAranF
16 7 frnd φranFK
17 15 16 sstrid φFAK
18 5 restuni KTopFAKFA=K𝑡FA
19 14 17 18 syl2anc φFA=K𝑡FA
20 foeq3 FA=K𝑡FAFA:AontoFAFA:AontoK𝑡FA
21 19 20 syl φFA:AontoFAFA:AontoK𝑡FA
22 12 21 mpbid φFA:AontoK𝑡FA
23 1 cnrest FJCnKAXFAJ𝑡ACnK
24 2 3 23 syl2anc φFAJ𝑡ACnK
25 toptopon2 KTopKTopOnK
26 14 25 sylib φKTopOnK
27 df-ima FA=ranFA
28 eqimss2 FA=ranFAranFAFA
29 27 28 mp1i φranFAFA
30 cnrest2 KTopOnKranFAFAFAKFAJ𝑡ACnKFAJ𝑡ACnK𝑡FA
31 26 29 17 30 syl3anc φFAJ𝑡ACnKFAJ𝑡ACnK𝑡FA
32 24 31 mpbid φFAJ𝑡ACnK𝑡FA
33 eqid K𝑡FA=K𝑡FA
34 33 cnconn J𝑡AConnFA:AontoK𝑡FAFAJ𝑡ACnK𝑡FAK𝑡FAConn
35 4 22 32 34 syl3anc φK𝑡FAConn