Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | connima.x | |
|
connima.f | |
||
connima.a | |
||
connima.c | |
||
Assertion | connima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | connima.x | |
|
2 | connima.f | |
|
3 | connima.a | |
|
4 | connima.c | |
|
5 | eqid | |
|
6 | 1 5 | cnf | |
7 | 2 6 | syl | |
8 | 7 | ffund | |
9 | 7 | fdmd | |
10 | 3 9 | sseqtrrd | |
11 | fores | |
|
12 | 8 10 11 | syl2anc | |
13 | cntop2 | |
|
14 | 2 13 | syl | |
15 | imassrn | |
|
16 | 7 | frnd | |
17 | 15 16 | sstrid | |
18 | 5 | restuni | |
19 | 14 17 18 | syl2anc | |
20 | foeq3 | |
|
21 | 19 20 | syl | |
22 | 12 21 | mpbid | |
23 | 1 | cnrest | |
24 | 2 3 23 | syl2anc | |
25 | toptopon2 | |
|
26 | 14 25 | sylib | |
27 | df-ima | |
|
28 | eqimss2 | |
|
29 | 27 28 | mp1i | |
30 | cnrest2 | |
|
31 | 26 29 17 30 | syl3anc | |
32 | 24 31 | mpbid | |
33 | eqid | |
|
34 | 33 | cnconn | |
35 | 4 22 32 34 | syl3anc | |