Metamath Proof Explorer


Theorem coprmdvds2

Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014)

Ref Expression
Assertion coprmdvds2 M N K M gcd N = 1 M K N K M N K

Proof

Step Hyp Ref Expression
1 divides N K N K x x N = K
2 1 3adant1 M N K N K x x N = K
3 2 adantr M N K M gcd N = 1 N K x x N = K
4 simprr M N K M gcd N = 1 x x
5 simpl2 M N K M gcd N = 1 x N
6 zcn x x
7 zcn N N
8 mulcom x N x N = N x
9 6 7 8 syl2an x N x N = N x
10 4 5 9 syl2anc M N K M gcd N = 1 x x N = N x
11 10 breq2d M N K M gcd N = 1 x M x N M N x
12 simprl M N K M gcd N = 1 x M gcd N = 1
13 simpl1 M N K M gcd N = 1 x M
14 coprmdvds M N x M N x M gcd N = 1 M x
15 13 5 4 14 syl3anc M N K M gcd N = 1 x M N x M gcd N = 1 M x
16 12 15 mpan2d M N K M gcd N = 1 x M N x M x
17 11 16 sylbid M N K M gcd N = 1 x M x N M x
18 dvdsmulc M x N M x M N x N
19 13 4 5 18 syl3anc M N K M gcd N = 1 x M x M N x N
20 17 19 syld M N K M gcd N = 1 x M x N M N x N
21 breq2 x N = K M x N M K
22 breq2 x N = K M N x N M N K
23 21 22 imbi12d x N = K M x N M N x N M K M N K
24 20 23 syl5ibcom M N K M gcd N = 1 x x N = K M K M N K
25 24 anassrs M N K M gcd N = 1 x x N = K M K M N K
26 25 rexlimdva M N K M gcd N = 1 x x N = K M K M N K
27 3 26 sylbid M N K M gcd N = 1 N K M K M N K
28 27 impcomd M N K M gcd N = 1 M K N K M N K