Metamath Proof Explorer


Theorem coprmdvds2

Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014)

Ref Expression
Assertion coprmdvds2 MNKMgcdN=1MKNK M NK

Proof

Step Hyp Ref Expression
1 divides NKNKxx N=K
2 1 3adant1 MNKNKxx N=K
3 2 adantr MNKMgcdN=1NKxx N=K
4 simprr MNKMgcdN=1xx
5 simpl2 MNKMgcdN=1xN
6 zcn xx
7 zcn NN
8 mulcom xNx N=Nx
9 6 7 8 syl2an xNx N=Nx
10 4 5 9 syl2anc MNKMgcdN=1xx N=Nx
11 10 breq2d MNKMgcdN=1xMx NMNx
12 simprl MNKMgcdN=1xMgcdN=1
13 simpl1 MNKMgcdN=1xM
14 coprmdvds MNxMNxMgcdN=1Mx
15 13 5 4 14 syl3anc MNKMgcdN=1xMNxMgcdN=1Mx
16 12 15 mpan2d MNKMgcdN=1xMNxMx
17 11 16 sylbid MNKMgcdN=1xMx NMx
18 dvdsmulc MxNMx M Nx N
19 13 4 5 18 syl3anc MNKMgcdN=1xMx M Nx N
20 17 19 syld MNKMgcdN=1xMx N M Nx N
21 breq2 x N=KMx NMK
22 breq2 x N=K M Nx N M NK
23 21 22 imbi12d x N=KMx N M Nx NMK M NK
24 20 23 syl5ibcom MNKMgcdN=1xx N=KMK M NK
25 24 anassrs MNKMgcdN=1xx N=KMK M NK
26 25 rexlimdva MNKMgcdN=1xx N=KMK M NK
27 3 26 sylbid MNKMgcdN=1NKMK M NK
28 27 impcomd MNKMgcdN=1MKNK M NK