Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | coprmdvds2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divides | |
|
2 | 1 | 3adant1 | |
3 | 2 | adantr | |
4 | simprr | |
|
5 | simpl2 | |
|
6 | zcn | |
|
7 | zcn | |
|
8 | mulcom | |
|
9 | 6 7 8 | syl2an | |
10 | 4 5 9 | syl2anc | |
11 | 10 | breq2d | |
12 | simprl | |
|
13 | simpl1 | |
|
14 | coprmdvds | |
|
15 | 13 5 4 14 | syl3anc | |
16 | 12 15 | mpan2d | |
17 | 11 16 | sylbid | |
18 | dvdsmulc | |
|
19 | 13 4 5 18 | syl3anc | |
20 | 17 19 | syld | |
21 | breq2 | |
|
22 | breq2 | |
|
23 | 21 22 | imbi12d | |
24 | 20 23 | syl5ibcom | |
25 | 24 | anassrs | |
26 | 25 | rexlimdva | |
27 | 3 26 | sylbid | |
28 | 27 | impcomd | |