Metamath Proof Explorer


Theorem corcltrcl

Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020)

Ref Expression
Assertion corcltrcl r*t+=t*

Proof

Step Hyp Ref Expression
1 dfrcl4 r*=aVi01ari
2 dftrcl3 t+=bVjbrj
3 dfrtrcl3 t*=cVk0crk
4 prex 01V
5 nnex V
6 df-n0 0=0
7 uncom 0=0
8 df-pr 01=01
9 8 uneq1i 01=01
10 unass 01=01
11 1nn 1
12 snssi 11
13 11 12 ax-mp 1
14 ssequn1 11=
15 13 14 mpbi 1=
16 15 uneq2i 01=0
17 9 10 16 3eqtrri 0=01
18 6 7 17 3eqtri 0=01
19 oveq2 k=idrk=dri
20 19 cbviunv k01drk=i01dri
21 ss2iun i01drijdrjrii01drii01jdrjri
22 relexp1g dVdr1=d
23 22 elv dr1=d
24 oveq2 j=1drj=dr1
25 24 ssiun2s 1dr1jdrj
26 11 25 ax-mp dr1jdrj
27 23 26 eqsstrri djdrj
28 27 a1i i01djdrj
29 ovex drjV
30 5 29 iunex jdrjV
31 30 a1i i01jdrjV
32 0nn0 00
33 1nn0 10
34 prssi 0010010
35 32 33 34 mp2an 010
36 35 sseli i01i0
37 28 31 36 relexpss1d i01drijdrjri
38 21 37 mprg i01drii01jdrjri
39 20 38 eqsstri k01drki01jdrjri
40 oveq2 k=jdrk=drj
41 40 cbviunv kdrk=jdrj
42 relexp1g jdrjVjdrjr1=jdrj
43 30 42 ax-mp jdrjr1=jdrj
44 41 43 eqtr4i kdrk=jdrjr1
45 1ex 1V
46 45 prid2 101
47 oveq2 i=1jdrjri=jdrjr1
48 47 ssiun2s 101jdrjr1i01jdrjri
49 46 48 ax-mp jdrjr1i01jdrjri
50 44 49 eqsstri kdrki01jdrjri
51 c0ex 0V
52 51 prid1 001
53 oveq2 k=0drk=dr0
54 53 ssiun2s 001dr0k01drk
55 52 54 ax-mp dr0k01drk
56 ssid kdrkkdrk
57 unss12 dr0k01drkkdrkkdrkdr0kdrkk01drkkdrk
58 55 56 57 mp2an dr0kdrkk01drkkdrk
59 iuneq1 01=01i01jdrjri=i01jdrjri
60 8 59 ax-mp i01jdrjri=i01jdrjri
61 iunxun i01jdrjri=i0jdrjrii1jdrjri
62 oveq2 i=0jdrjri=jdrjr0
63 51 62 iunxsn i0jdrjri=jdrjr0
64 vex dV
65 nnssnn0 0
66 inelcm 101101
67 46 11 66 mp2an 01
68 iunrelexp0 dV001jdrjr0=dr0
69 64 65 67 68 mp3an jdrjr0=dr0
70 63 69 eqtri i0jdrjri=dr0
71 45 47 iunxsn i1jdrjri=jdrjr1
72 43 41 eqtr4i jdrjr1=kdrk
73 71 72 eqtri i1jdrjri=kdrk
74 70 73 uneq12i i0jdrjrii1jdrjri=dr0kdrk
75 60 61 74 3eqtri i01jdrjri=dr0kdrk
76 iunxun k01drk=k01drkkdrk
77 58 75 76 3sstr4i i01jdrjrik01drk
78 1 2 3 4 5 18 39 50 77 comptiunov2i r*t+=t*