Metamath Proof Explorer


Theorem cosasin

Description: The cosine of the arcsine of A is sqrt ( 1 - A ^ 2 ) . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion cosasin AcosarcsinA=1A2

Proof

Step Hyp Ref Expression
1 asincl AarcsinA
2 cosval arcsinAcosarcsinA=eiarcsinA+eiarcsinA2
3 1 2 syl AcosarcsinA=eiarcsinA+eiarcsinA2
4 ax-1cn 1
5 sqcl AA2
6 subcl 1A21A2
7 4 5 6 sylancr A1A2
8 7 sqrtcld A1A2
9 ax-icn i
10 mulcl iAiA
11 9 10 mpan AiA
12 8 11 8 ppncand A1A2+iA+1A2iA=1A2+1A2
13 efiasin AeiarcsinA=iA+1A2
14 11 8 13 comraddd AeiarcsinA=1A2+iA
15 mulneg12 iarcsinAiarcsinA=iarcsinA
16 9 1 15 sylancr AiarcsinA=iarcsinA
17 asinneg AarcsinA=arcsinA
18 17 oveq2d AiarcsinA=iarcsinA
19 16 18 eqtr4d AiarcsinA=iarcsinA
20 19 fveq2d AeiarcsinA=eiarcsinA
21 negcl AA
22 efiasin AeiarcsinA=iA+1A2
23 21 22 syl AeiarcsinA=iA+1A2
24 mulneg2 iAiA=iA
25 9 24 mpan AiA=iA
26 sqneg AA2=A2
27 26 oveq2d A1A2=1A2
28 27 fveq2d A1A2=1A2
29 25 28 oveq12d AiA+1A2=-iA+1A2
30 20 23 29 3eqtrd AeiarcsinA=-iA+1A2
31 11 negcld AiA
32 31 8 addcomd A-iA+1A2=1A2+iA
33 8 11 negsubd A1A2+iA=1A2iA
34 30 32 33 3eqtrd AeiarcsinA=1A2iA
35 14 34 oveq12d AeiarcsinA+eiarcsinA=1A2+iA+1A2iA
36 8 2timesd A21A2=1A2+1A2
37 12 35 36 3eqtr4d AeiarcsinA+eiarcsinA=21A2
38 37 oveq1d AeiarcsinA+eiarcsinA2=21A22
39 2cnd A2
40 2ne0 20
41 40 a1i A20
42 8 39 41 divcan3d A21A22=1A2
43 3 38 42 3eqtrd AcosarcsinA=1A2