Metamath Proof Explorer


Theorem coseq0

Description: A complex number whose cosine is zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion coseq0 AcosA=0Aπ+12

Proof

Step Hyp Ref Expression
1 picn π
2 1 a1i Aπ
3 2 halfcld Aπ2
4 id AA
5 3 4 addcld Aπ2+A
6 sineq0 π2+Asinπ2+A=0π2+Aπ
7 5 6 syl Asinπ2+A=0π2+Aπ
8 sinhalfpip Asinπ2+A=cosA
9 8 eqeq1d Asinπ2+A=0cosA=0
10 pire π
11 pipos 0<π
12 10 11 gt0ne0ii π0
13 12 a1i Aπ0
14 3 4 2 13 divdird Aπ2+Aπ=π2π+Aπ
15 2cnd A2
16 2ne0 20
17 16 a1i A20
18 2 15 2 17 13 divdiv32d Aπ2π=ππ2
19 2 13 dividd Aππ=1
20 19 oveq1d Aππ2=12
21 18 20 eqtrd Aπ2π=12
22 21 oveq1d Aπ2π+Aπ=12+Aπ
23 1cnd A1
24 23 halfcld A12
25 4 2 13 divcld AAπ
26 24 25 addcomd A12+Aπ=Aπ+12
27 14 22 26 3eqtrd Aπ2+Aπ=Aπ+12
28 27 eleq1d Aπ2+AπAπ+12
29 7 9 28 3bitr3d AcosA=0Aπ+12