Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmsq.v | |
|
nmsq.h | |
||
nmsq.n | |
||
cphnmcl.f | |
||
cphnmcl.k | |
||
Assertion | cphnmf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | |
|
2 | nmsq.h | |
|
3 | nmsq.n | |
|
4 | cphnmcl.f | |
|
5 | cphnmcl.k | |
|
6 | 1 2 3 | cphnmfval | |
7 | simpl | |
|
8 | cphphl | |
|
9 | 8 | adantr | |
10 | simpr | |
|
11 | 4 2 1 5 | ipcl | |
12 | 9 10 10 11 | syl3anc | |
13 | 1 2 3 | nmsq | |
14 | cphngp | |
|
15 | 1 3 | nmcl | |
16 | 14 15 | sylan | |
17 | 16 | resqcld | |
18 | 13 17 | eqeltrrd | |
19 | 16 | sqge0d | |
20 | 19 13 | breqtrd | |
21 | 4 5 | cphsqrtcl | |
22 | 7 12 18 20 21 | syl13anc | |
23 | 6 22 | fmpt3d | |