Metamath Proof Explorer


Theorem cphnmf

Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)

Ref Expression
Hypotheses nmsq.v V=BaseW
nmsq.h ,˙=𝑖W
nmsq.n N=normW
cphnmcl.f F=ScalarW
cphnmcl.k K=BaseF
Assertion cphnmf WCPreHilN:VK

Proof

Step Hyp Ref Expression
1 nmsq.v V=BaseW
2 nmsq.h ,˙=𝑖W
3 nmsq.n N=normW
4 cphnmcl.f F=ScalarW
5 cphnmcl.k K=BaseF
6 1 2 3 cphnmfval WCPreHilN=xVx,˙x
7 simpl WCPreHilxVWCPreHil
8 cphphl WCPreHilWPreHil
9 8 adantr WCPreHilxVWPreHil
10 simpr WCPreHilxVxV
11 4 2 1 5 ipcl WPreHilxVxVx,˙xK
12 9 10 10 11 syl3anc WCPreHilxVx,˙xK
13 1 2 3 nmsq WCPreHilxVNx2=x,˙x
14 cphngp WCPreHilWNrmGrp
15 1 3 nmcl WNrmGrpxVNx
16 14 15 sylan WCPreHilxVNx
17 16 resqcld WCPreHilxVNx2
18 13 17 eqeltrrd WCPreHilxVx,˙x
19 16 sqge0d WCPreHilxV0Nx2
20 19 13 breqtrd WCPreHilxV0x,˙x
21 4 5 cphsqrtcl WCPreHilx,˙xKx,˙x0x,˙xx,˙xK
22 7 12 18 20 21 syl13anc WCPreHilxVx,˙xK
23 6 22 fmpt3d WCPreHilN:VK