Metamath Proof Explorer


Theorem cplgr1v

Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 1-Nov-2020) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 14-Feb-2022)

Ref Expression
Hypothesis cplgr0v.v V=VtxG
Assertion cplgr1v V=1GComplGraph

Proof

Step Hyp Ref Expression
1 cplgr0v.v V=VtxG
2 simpr V=1vVvV
3 ral0 nnGNeighbVtxv
4 1 fvexi VV
5 hash1snb VVV=1nV=n
6 4 5 ax-mp V=1nV=n
7 velsn vnv=n
8 sneq v=nv=n
9 8 difeq2d v=nnv=nn
10 difid nn=
11 9 10 eqtrdi v=nnv=
12 7 11 sylbi vnnv=
13 12 a1i V=nvnnv=
14 eleq2 V=nvVvn
15 difeq1 V=nVv=nv
16 15 eqeq1d V=nVv=nv=
17 13 14 16 3imtr4d V=nvVVv=
18 17 exlimiv nV=nvVVv=
19 6 18 sylbi V=1vVVv=
20 19 imp V=1vVVv=
21 20 raleqdv V=1vVnVvnGNeighbVtxvnnGNeighbVtxv
22 3 21 mpbiri V=1vVnVvnGNeighbVtxv
23 1 uvtxel vUnivVtxGvVnVvnGNeighbVtxv
24 2 22 23 sylanbrc V=1vVvUnivVtxG
25 24 ralrimiva V=1vVvUnivVtxG
26 1 cplgr1vlem V=1GV
27 1 iscplgr GVGComplGraphvVvUnivVtxG
28 26 27 syl V=1GComplGraphvVvUnivVtxG
29 25 28 mpbird V=1GComplGraph