Metamath Proof Explorer


Theorem curry2ima

Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017)

Ref Expression
Hypothesis curry2ima.1 G=F1stV×C-1
Assertion curry2ima FFnA×BCBDAGD=y|xDy=xFC

Proof

Step Hyp Ref Expression
1 curry2ima.1 G=F1stV×C-1
2 simp1 FFnA×BCBDAFFnA×B
3 dffn2 FFnA×BF:A×BV
4 2 3 sylib FFnA×BCBDAF:A×BV
5 simp2 FFnA×BCBDACB
6 1 curry2f F:A×BVCBG:AV
7 4 5 6 syl2anc FFnA×BCBDAG:AV
8 7 ffund FFnA×BCBDAFunG
9 simp3 FFnA×BCBDADA
10 7 fdmd FFnA×BCBDAdomG=A
11 9 10 sseqtrrd FFnA×BCBDADdomG
12 dfimafn FunGDdomGGD=y|xDGx=y
13 8 11 12 syl2anc FFnA×BCBDAGD=y|xDGx=y
14 1 curry2val FFnA×BCBGx=xFC
15 14 3adant3 FFnA×BCBDAGx=xFC
16 15 eqeq1d FFnA×BCBDAGx=yxFC=y
17 eqcom xFC=yy=xFC
18 16 17 bitrdi FFnA×BCBDAGx=yy=xFC
19 18 rexbidv FFnA×BCBDAxDGx=yxDy=xFC
20 19 abbidv FFnA×BCBDAy|xDGx=y=y|xDy=xFC
21 13 20 eqtrd FFnA×BCBDAGD=y|xDy=xFC