Metamath Proof Explorer


Theorem cusgr3cyclex

Description: Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023)

Ref Expression
Hypothesis cusgr3cyclex.1 V = Vtx G
Assertion cusgr3cyclex G ComplUSGraph 2 < V f p f Cycles G p f = 3

Proof

Step Hyp Ref Expression
1 cusgr3cyclex.1 V = Vtx G
2 3anass a V b V c V a V b V c V
3 2 bianass G ComplUSGraph a V b V c V G ComplUSGraph a V b V c V
4 cusgrusgr G ComplUSGraph G USGraph
5 usgrumgr G USGraph G UMGraph
6 4 5 syl G ComplUSGraph G UMGraph
7 3simpc a V b V c V b V c V
8 7 ancli a V b V c V a V b V c V b V c V
9 df-3an a b a c b c a b a c b c
10 9 biimpi a b a c b c a b a c b c
11 an32 a V b V c V b V c V a b a c a V b V c V a b a c b V c V
12 11 anbi1i a V b V c V b V c V a b a c b c a V b V c V a b a c b V c V b c
13 anass a V b V c V a b a c b V c V b c a V b V c V a b a c b V c V b c
14 12 13 sylbb a V b V c V b V c V a b a c b c a V b V c V a b a c b V c V b c
15 14 anasss a V b V c V b V c V a b a c b c a V b V c V a b a c b V c V b c
16 8 10 15 syl2an a V b V c V a b a c b c a V b V c V a b a c b V c V b c
17 anandi3 a V b V c V a V b V a V c V
18 17 anbi1i a V b V c V a b a c a V b V a V c V a b a c
19 an4 a V b V a V c V a b a c a V b V a b a V c V a c
20 18 19 sylbb a V b V c V a b a c a V b V a b a V c V a c
21 df-3an a V b V a b a V b V a b
22 eqid Edg G = Edg G
23 1 22 cusgredgex2 G ComplUSGraph a V b V a b a b Edg G
24 21 23 syl5bir G ComplUSGraph a V b V a b a b Edg G
25 df-3an a V c V a c a V c V a c
26 1 22 cusgredgex2 G ComplUSGraph a V c V a c a c Edg G
27 25 26 syl5bir G ComplUSGraph a V c V a c a c Edg G
28 24 27 anim12d G ComplUSGraph a V b V a b a V c V a c a b Edg G a c Edg G
29 20 28 syl5 G ComplUSGraph a V b V c V a b a c a b Edg G a c Edg G
30 df-3an b V c V b c b V c V b c
31 1 22 cusgredgex2 G ComplUSGraph b V c V b c b c Edg G
32 30 31 syl5bir G ComplUSGraph b V c V b c b c Edg G
33 29 32 anim12d G ComplUSGraph a V b V c V a b a c b V c V b c a b Edg G a c Edg G b c Edg G
34 16 33 syl5 G ComplUSGraph a V b V c V a b a c b c a b Edg G a c Edg G b c Edg G
35 3anan32 a b Edg G b c Edg G a c Edg G a b Edg G a c Edg G b c Edg G
36 prcom a c = c a
37 36 eleq1i a c Edg G c a Edg G
38 37 3anbi3i a b Edg G b c Edg G a c Edg G a b Edg G b c Edg G c a Edg G
39 35 38 bitr3i a b Edg G a c Edg G b c Edg G a b Edg G b c Edg G c a Edg G
40 34 39 syl6ib G ComplUSGraph a V b V c V a b a c b c a b Edg G b c Edg G c a Edg G
41 pm5.3 a V b V c V a b a c b c a b Edg G b c Edg G c a Edg G a V b V c V a b a c b c a V b V c V a b Edg G b c Edg G c a Edg G
42 40 41 sylib G ComplUSGraph a V b V c V a b a c b c a V b V c V a b Edg G b c Edg G c a Edg G
43 1 22 umgr3cyclex G UMGraph a V b V c V a b Edg G b c Edg G c a Edg G f p f Cycles G p f = 3 p 0 = a
44 3simpa f Cycles G p f = 3 p 0 = a f Cycles G p f = 3
45 44 2eximi f p f Cycles G p f = 3 p 0 = a f p f Cycles G p f = 3
46 43 45 syl G UMGraph a V b V c V a b Edg G b c Edg G c a Edg G f p f Cycles G p f = 3
47 46 3expib G UMGraph a V b V c V a b Edg G b c Edg G c a Edg G f p f Cycles G p f = 3
48 6 42 47 sylsyld G ComplUSGraph a V b V c V a b a c b c f p f Cycles G p f = 3
49 48 expdimp G ComplUSGraph a V b V c V a b a c b c f p f Cycles G p f = 3
50 3 49 sylbir G ComplUSGraph a V b V c V a b a c b c f p f Cycles G p f = 3
51 50 reximdvva G ComplUSGraph a V b V c V a b a c b c b V c V f p f Cycles G p f = 3
52 51 reximdva G ComplUSGraph a V b V c V a b a c b c a V b V c V f p f Cycles G p f = 3
53 id f p f Cycles G p f = 3 f p f Cycles G p f = 3
54 53 rexlimivw c V f p f Cycles G p f = 3 f p f Cycles G p f = 3
55 54 rexlimivw b V c V f p f Cycles G p f = 3 f p f Cycles G p f = 3
56 55 rexlimivw a V b V c V f p f Cycles G p f = 3 f p f Cycles G p f = 3
57 52 56 syl6 G ComplUSGraph a V b V c V a b a c b c f p f Cycles G p f = 3
58 1 fvexi V V
59 hashgt23el V V 2 < V a V b V c V a b a c b c
60 58 59 mpan 2 < V a V b V c V a b a c b c
61 57 60 impel G ComplUSGraph 2 < V f p f Cycles G p f = 3