Metamath Proof Explorer


Theorem cusgrres

Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018)

Ref Expression
Hypotheses cusgrres.v V = Vtx G
cusgrres.e E = Edg G
cusgrres.f F = e E | N e
cusgrres.s S = V N I F
Assertion cusgrres G ComplUSGraph N V S ComplUSGraph

Proof

Step Hyp Ref Expression
1 cusgrres.v V = Vtx G
2 cusgrres.e E = Edg G
3 cusgrres.f F = e E | N e
4 cusgrres.s S = V N I F
5 cusgrusgr G ComplUSGraph G USGraph
6 1 2 3 4 usgrres1 G USGraph N V S USGraph
7 5 6 sylan G ComplUSGraph N V S USGraph
8 iscusgr G ComplUSGraph G USGraph G ComplGraph
9 usgrupgr G USGraph G UPGraph
10 9 adantr G USGraph G ComplGraph G UPGraph
11 10 anim1i G USGraph G ComplGraph N V G UPGraph N V
12 11 anim1i G USGraph G ComplGraph N V v V N G UPGraph N V v V N
13 1 iscplgr G USGraph G ComplGraph n V n UnivVtx G
14 eldifi v V N v V
15 14 ad2antll G USGraph N V v V N v V
16 eleq1w n = v n UnivVtx G v UnivVtx G
17 16 rspcv v V n V n UnivVtx G v UnivVtx G
18 15 17 syl G USGraph N V v V N n V n UnivVtx G v UnivVtx G
19 18 ex G USGraph N V v V N n V n UnivVtx G v UnivVtx G
20 19 com23 G USGraph n V n UnivVtx G N V v V N v UnivVtx G
21 13 20 sylbid G USGraph G ComplGraph N V v V N v UnivVtx G
22 21 imp G USGraph G ComplGraph N V v V N v UnivVtx G
23 22 impl G USGraph G ComplGraph N V v V N v UnivVtx G
24 1 2 3 4 uvtxupgrres G UPGraph N V v V N v UnivVtx G v UnivVtx S
25 12 23 24 sylc G USGraph G ComplGraph N V v V N v UnivVtx S
26 25 ralrimiva G USGraph G ComplGraph N V v V N v UnivVtx S
27 8 26 sylanb G ComplUSGraph N V v V N v UnivVtx S
28 opex V N I F V
29 4 28 eqeltri S V
30 1 2 3 4 upgrres1lem2 Vtx S = V N
31 30 eqcomi V N = Vtx S
32 31 iscplgr S V S ComplGraph v V N v UnivVtx S
33 29 32 mp1i G ComplUSGraph N V S ComplGraph v V N v UnivVtx S
34 27 33 mpbird G ComplUSGraph N V S ComplGraph
35 iscusgr S ComplUSGraph S USGraph S ComplGraph
36 7 34 35 sylanbrc G ComplUSGraph N V S ComplUSGraph