Metamath Proof Explorer


Theorem cusgrres

Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018)

Ref Expression
Hypotheses cusgrres.v V=VtxG
cusgrres.e E=EdgG
cusgrres.f F=eE|Ne
cusgrres.s S=VNIF
Assertion cusgrres GComplUSGraphNVSComplUSGraph

Proof

Step Hyp Ref Expression
1 cusgrres.v V=VtxG
2 cusgrres.e E=EdgG
3 cusgrres.f F=eE|Ne
4 cusgrres.s S=VNIF
5 cusgrusgr GComplUSGraphGUSGraph
6 1 2 3 4 usgrres1 GUSGraphNVSUSGraph
7 5 6 sylan GComplUSGraphNVSUSGraph
8 iscusgr GComplUSGraphGUSGraphGComplGraph
9 usgrupgr GUSGraphGUPGraph
10 9 adantr GUSGraphGComplGraphGUPGraph
11 10 anim1i GUSGraphGComplGraphNVGUPGraphNV
12 11 anim1i GUSGraphGComplGraphNVvVNGUPGraphNVvVN
13 1 iscplgr GUSGraphGComplGraphnVnUnivVtxG
14 eldifi vVNvV
15 14 ad2antll GUSGraphNVvVNvV
16 eleq1w n=vnUnivVtxGvUnivVtxG
17 16 rspcv vVnVnUnivVtxGvUnivVtxG
18 15 17 syl GUSGraphNVvVNnVnUnivVtxGvUnivVtxG
19 18 ex GUSGraphNVvVNnVnUnivVtxGvUnivVtxG
20 19 com23 GUSGraphnVnUnivVtxGNVvVNvUnivVtxG
21 13 20 sylbid GUSGraphGComplGraphNVvVNvUnivVtxG
22 21 imp GUSGraphGComplGraphNVvVNvUnivVtxG
23 22 impl GUSGraphGComplGraphNVvVNvUnivVtxG
24 1 2 3 4 uvtxupgrres GUPGraphNVvVNvUnivVtxGvUnivVtxS
25 12 23 24 sylc GUSGraphGComplGraphNVvVNvUnivVtxS
26 25 ralrimiva GUSGraphGComplGraphNVvVNvUnivVtxS
27 8 26 sylanb GComplUSGraphNVvVNvUnivVtxS
28 opex VNIFV
29 4 28 eqeltri SV
30 1 2 3 4 upgrres1lem2 VtxS=VN
31 30 eqcomi VN=VtxS
32 31 iscplgr SVSComplGraphvVNvUnivVtxS
33 29 32 mp1i GComplUSGraphNVSComplGraphvVNvUnivVtxS
34 27 33 mpbird GComplUSGraphNVSComplGraph
35 iscusgr SComplUSGraphSUSGraphSComplGraph
36 7 34 35 sylanbrc GComplUSGraphNVSComplUSGraph