Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrsizeindb0.v |
|
2 |
|
cusgrsizeindb0.e |
|
3 |
|
edgval |
|
4 |
2 3
|
eqtri |
|
5 |
4
|
a1i |
|
6 |
5
|
fveq2d |
|
7 |
1
|
opeq1i |
|
8 |
|
cusgrop |
|
9 |
7 8
|
eqeltrid |
|
10 |
|
fvex |
|
11 |
|
fvex |
|
12 |
|
rabexg |
|
13 |
12
|
resiexd |
|
14 |
11 13
|
ax-mp |
|
15 |
|
rneq |
|
16 |
15
|
fveq2d |
|
17 |
|
fveq2 |
|
18 |
17
|
oveq1d |
|
19 |
16 18
|
eqeqan12rd |
|
20 |
|
rneq |
|
21 |
20
|
fveq2d |
|
22 |
|
fveq2 |
|
23 |
22
|
oveq1d |
|
24 |
21 23
|
eqeqan12rd |
|
25 |
|
vex |
|
26 |
|
vex |
|
27 |
25 26
|
opvtxfvi |
|
28 |
27
|
eqcomi |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
28 29 30 31
|
cusgrres |
|
33 |
|
rneq |
|
34 |
33
|
fveq2d |
|
35 |
34
|
adantl |
|
36 |
|
fveq2 |
|
37 |
36
|
adantr |
|
38 |
37
|
oveq1d |
|
39 |
35 38
|
eqeq12d |
|
40 |
|
edgopval |
|
41 |
40
|
el2v |
|
42 |
41
|
a1i |
|
43 |
42
|
eqcomd |
|
44 |
43
|
fveq2d |
|
45 |
|
cusgrusgr |
|
46 |
|
usgruhgr |
|
47 |
45 46
|
syl |
|
48 |
28 29
|
cusgrsizeindb0 |
|
49 |
47 48
|
sylan |
|
50 |
44 49
|
eqtrd |
|
51 |
|
rnresi |
|
52 |
51
|
fveq2i |
|
53 |
41
|
a1i |
|
54 |
53
|
rabeqdv |
|
55 |
54
|
fveq2d |
|
56 |
52 55
|
eqtrid |
|
57 |
56
|
eqeq1d |
|
58 |
57
|
biimpd |
|
59 |
58
|
imdistani |
|
60 |
41
|
eqcomi |
|
61 |
|
eqid |
|
62 |
28 60 61
|
cusgrsize2inds |
|
63 |
62
|
imp31 |
|
64 |
59 63
|
syl |
|
65 |
10 14 19 24 32 39 50 64
|
opfi1ind |
|
66 |
9 65
|
sylan |
|
67 |
6 66
|
eqtrd |
|