Metamath Proof Explorer


Theorem cvmseu

Description: Every element in U. T is a member of a unique element of T . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmseu.1 B=C
Assertion cvmseu FCCovMapJTSUABFAU∃!xTAx

Proof

Step Hyp Ref Expression
1 cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmseu.1 B=C
3 simpr2 FCCovMapJTSUABFAUAB
4 simpr3 FCCovMapJTSUABFAUFAU
5 cvmcn FCCovMapJFCCnJ
6 5 adantr FCCovMapJTSUABFAUFCCnJ
7 eqid J=J
8 2 7 cnf FCCnJF:BJ
9 ffn F:BJFFnB
10 elpreima FFnBAF-1UABFAU
11 6 8 9 10 4syl FCCovMapJTSUABFAUAF-1UABFAU
12 3 4 11 mpbir2and FCCovMapJTSUABFAUAF-1U
13 simpr1 FCCovMapJTSUABFAUTSU
14 1 cvmsuni TSUT=F-1U
15 13 14 syl FCCovMapJTSUABFAUT=F-1U
16 12 15 eleqtrrd FCCovMapJTSUABFAUAT
17 eluni2 ATxTAx
18 16 17 sylib FCCovMapJTSUABFAUxTAx
19 inelcm AxAzxz
20 1 cvmsdisj TSUxTzTx=zxz=
21 20 3expb TSUxTzTx=zxz=
22 13 21 sylan FCCovMapJTSUABFAUxTzTx=zxz=
23 22 ord FCCovMapJTSUABFAUxTzT¬x=zxz=
24 23 necon1ad FCCovMapJTSUABFAUxTzTxzx=z
25 19 24 syl5 FCCovMapJTSUABFAUxTzTAxAzx=z
26 25 ralrimivva FCCovMapJTSUABFAUxTzTAxAzx=z
27 eleq2w x=zAxAz
28 27 reu4 ∃!xTAxxTAxxTzTAxAzx=z
29 18 26 28 sylanbrc FCCovMapJTSUABFAU∃!xTAx