Description: Every element in U. T is a member of a unique element of T . (Contributed by Mario Carneiro, 14-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cvmcov.1 | |
|
cvmseu.1 | |
||
Assertion | cvmseu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmcov.1 | |
|
2 | cvmseu.1 | |
|
3 | simpr2 | |
|
4 | simpr3 | |
|
5 | cvmcn | |
|
6 | 5 | adantr | |
7 | eqid | |
|
8 | 2 7 | cnf | |
9 | ffn | |
|
10 | elpreima | |
|
11 | 6 8 9 10 | 4syl | |
12 | 3 4 11 | mpbir2and | |
13 | simpr1 | |
|
14 | 1 | cvmsuni | |
15 | 13 14 | syl | |
16 | 12 15 | eleqtrrd | |
17 | eluni2 | |
|
18 | 16 17 | sylib | |
19 | inelcm | |
|
20 | 1 | cvmsdisj | |
21 | 20 | 3expb | |
22 | 13 21 | sylan | |
23 | 22 | ord | |
24 | 23 | necon1ad | |
25 | 19 24 | syl5 | |
26 | 25 | ralrimivva | |
27 | eleq2w | |
|
28 | 27 | reu4 | |
29 | 18 26 28 | sylanbrc | |