Metamath Proof Explorer


Theorem cvrval2

Description: Binary relation expressing Y covers X . Definition of covers in Kalmbach p. 15. ( cvbr2 analog.) (Contributed by NM, 16-Nov-2011)

Ref Expression
Hypotheses cvrletr.b B=BaseK
cvrletr.l ˙=K
cvrletr.s <˙=<K
cvrletr.c C=K
Assertion cvrval2 KAXBYBXCYX<˙YzBX<˙zz˙Yz=Y

Proof

Step Hyp Ref Expression
1 cvrletr.b B=BaseK
2 cvrletr.l ˙=K
3 cvrletr.s <˙=<K
4 cvrletr.c C=K
5 1 3 4 cvrval KAXBYBXCYX<˙Y¬zBX<˙zz<˙Y
6 iman X<˙zz˙Yz=Y¬X<˙zz˙Y¬z=Y
7 df-ne zY¬z=Y
8 7 anbi2i X<˙zz˙YzYX<˙zz˙Y¬z=Y
9 6 8 xchbinxr X<˙zz˙Yz=Y¬X<˙zz˙YzY
10 anass X<˙zz˙YzYX<˙zz˙YzY
11 2 3 pltval KAzBYBz<˙Yz˙YzY
12 11 3com23 KAYBzBz<˙Yz˙YzY
13 12 3expa KAYBzBz<˙Yz˙YzY
14 13 anbi2d KAYBzBX<˙zz<˙YX<˙zz˙YzY
15 10 14 bitr4id KAYBzBX<˙zz˙YzYX<˙zz<˙Y
16 15 notbid KAYBzB¬X<˙zz˙YzY¬X<˙zz<˙Y
17 9 16 bitrid KAYBzBX<˙zz˙Yz=Y¬X<˙zz<˙Y
18 17 ralbidva KAYBzBX<˙zz˙Yz=YzB¬X<˙zz<˙Y
19 ralnex zB¬X<˙zz<˙Y¬zBX<˙zz<˙Y
20 18 19 bitrdi KAYBzBX<˙zz˙Yz=Y¬zBX<˙zz<˙Y
21 20 anbi2d KAYBX<˙YzBX<˙zz˙Yz=YX<˙Y¬zBX<˙zz<˙Y
22 21 3adant2 KAXBYBX<˙YzBX<˙zz˙Yz=YX<˙Y¬zBX<˙zz<˙Y
23 5 22 bitr4d KAXBYBXCYX<˙YzBX<˙zz˙Yz=Y