Metamath Proof Explorer


Theorem cxpcncf1

Description: The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn . (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses cxpcncf1.a φA
cxpcncf1.d φD−∞0
Assertion cxpcncf1 φxDxA:Dcn

Proof

Step Hyp Ref Expression
1 cxpcncf1.a φA
2 cxpcncf1.d φD−∞0
3 resmpt D−∞0x−∞0xAD=xDxA
4 2 3 syl φx−∞0xAD=xDxA
5 eqid TopOpenfld=TopOpenfld
6 5 cnfldtopon TopOpenfldTopOn
7 difss −∞0
8 resttopon TopOpenfldTopOn−∞0TopOpenfld𝑡−∞0TopOn−∞0
9 6 7 8 mp2an TopOpenfld𝑡−∞0TopOn−∞0
10 9 a1i φTopOpenfld𝑡−∞0TopOn−∞0
11 10 cnmptid φx−∞0xTopOpenfld𝑡−∞0CnTopOpenfld𝑡−∞0
12 6 a1i φTopOpenfldTopOn
13 10 12 1 cnmptc φx−∞0ATopOpenfld𝑡−∞0CnTopOpenfld
14 eqid −∞0=−∞0
15 eqid TopOpenfld𝑡−∞0=TopOpenfld𝑡−∞0
16 14 5 15 cxpcn y−∞0,zyzTopOpenfld𝑡−∞0×tTopOpenfldCnTopOpenfld
17 16 a1i φy−∞0,zyzTopOpenfld𝑡−∞0×tTopOpenfldCnTopOpenfld
18 oveq12 y=xz=Ayz=xA
19 10 11 13 10 12 17 18 cnmpt12 φx−∞0xATopOpenfld𝑡−∞0CnTopOpenfld
20 ssid
21 6 toponrestid TopOpenfld=TopOpenfld𝑡
22 5 15 21 cncfcn −∞0−∞0cn=TopOpenfld𝑡−∞0CnTopOpenfld
23 7 20 22 mp2an −∞0cn=TopOpenfld𝑡−∞0CnTopOpenfld
24 23 eqcomi TopOpenfld𝑡−∞0CnTopOpenfld=−∞0cn
25 24 a1i φTopOpenfld𝑡−∞0CnTopOpenfld=−∞0cn
26 19 25 eleqtrd φx−∞0xA:−∞0cn
27 rescncf D−∞0x−∞0xA:−∞0cnx−∞0xAD:Dcn
28 27 imp D−∞0x−∞0xA:−∞0cnx−∞0xAD:Dcn
29 2 26 28 syl2anc φx−∞0xAD:Dcn
30 4 29 eqeltrrd φxDxA:Dcn