Metamath Proof Explorer


Theorem cycsubmcmn

Description: The set of nonnegative integer powers of an element A of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024)

Ref Expression
Hypotheses cycsubmcmn.b B=BaseG
cycsubmcmn.t ·˙=G
cycsubmcmn.f F=x0x·˙A
cycsubmcmn.c C=ranF
Assertion cycsubmcmn GMndABG𝑠CCMnd

Proof

Step Hyp Ref Expression
1 cycsubmcmn.b B=BaseG
2 cycsubmcmn.t ·˙=G
3 cycsubmcmn.f F=x0x·˙A
4 cycsubmcmn.c C=ranF
5 1 2 3 4 cycsubm GMndABCSubMndG
6 eqid 0G=0G
7 eqid G𝑠C=G𝑠C
8 1 6 7 issubm2 GMndCSubMndGCB0GCG𝑠CMnd
9 8 adantr GMndABCSubMndGCB0GCG𝑠CMnd
10 simp3 CB0GCG𝑠CMndG𝑠CMnd
11 9 10 syl6bi GMndABCSubMndGG𝑠CMnd
12 5 11 mpd GMndABG𝑠CMnd
13 7 submbas CSubMndGC=BaseG𝑠C
14 5 13 syl GMndABC=BaseG𝑠C
15 14 eqcomd GMndABBaseG𝑠C=C
16 15 eleq2d GMndABxBaseG𝑠CxC
17 15 eleq2d GMndAByBaseG𝑠CyC
18 16 17 anbi12d GMndABxBaseG𝑠CyBaseG𝑠CxCyC
19 eqid +G=+G
20 1 2 3 4 19 cycsubmcom GMndABxCyCx+Gy=y+Gx
21 5 adantr GMndABxCyCCSubMndG
22 7 19 ressplusg CSubMndG+G=+G𝑠C
23 22 eqcomd CSubMndG+G𝑠C=+G
24 23 oveqd CSubMndGx+G𝑠Cy=x+Gy
25 23 oveqd CSubMndGy+G𝑠Cx=y+Gx
26 24 25 eqeq12d CSubMndGx+G𝑠Cy=y+G𝑠Cxx+Gy=y+Gx
27 21 26 syl GMndABxCyCx+G𝑠Cy=y+G𝑠Cxx+Gy=y+Gx
28 20 27 mpbird GMndABxCyCx+G𝑠Cy=y+G𝑠Cx
29 28 ex GMndABxCyCx+G𝑠Cy=y+G𝑠Cx
30 18 29 sylbid GMndABxBaseG𝑠CyBaseG𝑠Cx+G𝑠Cy=y+G𝑠Cx
31 30 ralrimivv GMndABxBaseG𝑠CyBaseG𝑠Cx+G𝑠Cy=y+G𝑠Cx
32 eqid BaseG𝑠C=BaseG𝑠C
33 eqid +G𝑠C=+G𝑠C
34 32 33 iscmn G𝑠CCMndG𝑠CMndxBaseG𝑠CyBaseG𝑠Cx+G𝑠Cy=y+G𝑠Cx
35 12 31 34 sylanbrc GMndABG𝑠CCMnd