Description: The set of nonnegative integer powers of an element A of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cycsubmcmn.b | |
|
cycsubmcmn.t | |
||
cycsubmcmn.f | |
||
cycsubmcmn.c | |
||
Assertion | cycsubmcmn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubmcmn.b | |
|
2 | cycsubmcmn.t | |
|
3 | cycsubmcmn.f | |
|
4 | cycsubmcmn.c | |
|
5 | 1 2 3 4 | cycsubm | |
6 | eqid | |
|
7 | eqid | |
|
8 | 1 6 7 | issubm2 | |
9 | 8 | adantr | |
10 | simp3 | |
|
11 | 9 10 | syl6bi | |
12 | 5 11 | mpd | |
13 | 7 | submbas | |
14 | 5 13 | syl | |
15 | 14 | eqcomd | |
16 | 15 | eleq2d | |
17 | 15 | eleq2d | |
18 | 16 17 | anbi12d | |
19 | eqid | |
|
20 | 1 2 3 4 19 | cycsubmcom | |
21 | 5 | adantr | |
22 | 7 19 | ressplusg | |
23 | 22 | eqcomd | |
24 | 23 | oveqd | |
25 | 23 | oveqd | |
26 | 24 25 | eqeq12d | |
27 | 21 26 | syl | |
28 | 20 27 | mpbird | |
29 | 28 | ex | |
30 | 18 29 | sylbid | |
31 | 30 | ralrimivv | |
32 | eqid | |
|
33 | eqid | |
|
34 | 32 33 | iscmn | |
35 | 12 31 34 | sylanbrc | |