Metamath Proof Explorer


Theorem cygznlem2a

Description: Lemma for cygzn . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses cygzn.b B = Base G
cygzn.n N = if B Fin B 0
cygzn.y Y = /N
cygzn.m · ˙ = G
cygzn.l L = ℤRHom Y
cygzn.e E = x B | ran n n · ˙ x = B
cygzn.g φ G CycGrp
cygzn.x φ X E
cygzn.f F = ran m L m m · ˙ X
Assertion cygznlem2a φ F : Base Y B

Proof

Step Hyp Ref Expression
1 cygzn.b B = Base G
2 cygzn.n N = if B Fin B 0
3 cygzn.y Y = /N
4 cygzn.m · ˙ = G
5 cygzn.l L = ℤRHom Y
6 cygzn.e E = x B | ran n n · ˙ x = B
7 cygzn.g φ G CycGrp
8 cygzn.x φ X E
9 cygzn.f F = ran m L m m · ˙ X
10 fvexd φ m L m V
11 cyggrp G CycGrp G Grp
12 7 11 syl φ G Grp
13 12 adantr φ m G Grp
14 simpr φ m m
15 6 ssrab3 E B
16 15 8 sseldi φ X B
17 16 adantr φ m X B
18 1 4 mulgcl G Grp m X B m · ˙ X B
19 13 14 17 18 syl3anc φ m m · ˙ X B
20 fveq2 m = k L m = L k
21 oveq1 m = k m · ˙ X = k · ˙ X
22 1 2 3 4 5 6 7 8 cygznlem1 φ m k L m = L k m · ˙ X = k · ˙ X
23 22 biimpd φ m k L m = L k m · ˙ X = k · ˙ X
24 23 exp32 φ m k L m = L k m · ˙ X = k · ˙ X
25 24 3imp2 φ m k L m = L k m · ˙ X = k · ˙ X
26 9 10 19 20 21 25 fliftfund φ Fun F
27 9 10 19 fliftf φ Fun F F : ran m L m B
28 26 27 mpbid φ F : ran m L m B
29 hashcl B Fin B 0
30 29 adantl φ B Fin B 0
31 0nn0 0 0
32 31 a1i φ ¬ B Fin 0 0
33 30 32 ifclda φ if B Fin B 0 0
34 2 33 eqeltrid φ N 0
35 eqid Base Y = Base Y
36 3 35 5 znzrhfo N 0 L : onto Base Y
37 34 36 syl φ L : onto Base Y
38 fof L : onto Base Y L : Base Y
39 37 38 syl φ L : Base Y
40 39 feqmptd φ L = m L m
41 40 rneqd φ ran L = ran m L m
42 forn L : onto Base Y ran L = Base Y
43 37 42 syl φ ran L = Base Y
44 41 43 eqtr3d φ ran m L m = Base Y
45 44 feq2d φ F : ran m L m B F : Base Y B
46 28 45 mpbid φ F : Base Y B