Metamath Proof Explorer


Theorem d1mat2pmat

Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019)

Ref Expression
Hypotheses d1mat2pmat.t T=NmatToPolyMatR
d1mat2pmat.b B=BaseNMatR
d1mat2pmat.p P=Poly1R
d1mat2pmat.s S=algScP
Assertion d1mat2pmat RVN=AAVMBTM=AASAMA

Proof

Step Hyp Ref Expression
1 d1mat2pmat.t T=NmatToPolyMatR
2 d1mat2pmat.b B=BaseNMatR
3 d1mat2pmat.p P=Poly1R
4 d1mat2pmat.s S=algScP
5 snfi AFin
6 eleq1 N=ANFinAFin
7 5 6 mpbiri N=ANFin
8 7 adantr N=AAVNFin
9 8 3ad2ant2 RVN=AAVMBNFin
10 simp1 RVN=AAVMBRV
11 simp3 RVN=AAVMBMB
12 eqid NMatR=NMatR
13 1 12 2 3 4 mat2pmatval NFinRVMBTM=iN,jNSiMj
14 9 10 11 13 syl3anc RVN=AAVMBTM=iN,jNSiMj
15 id AVAV
16 fvexd AVSAMAV
17 15 15 16 3jca AVAVAVSAMAV
18 17 adantl N=AAVAVAVSAMAV
19 18 3ad2ant2 RVN=AAVMBAVAVSAMAV
20 eqid iA,jASiMj=iA,jASiMj
21 fvoveq1 i=ASiMj=SAMj
22 oveq2 j=AAMj=AMA
23 22 fveq2d j=ASAMj=SAMA
24 20 21 23 mposn AVAVSAMAViA,jASiMj=AASAMA
25 19 24 syl RVN=AAVMBiA,jASiMj=AASAMA
26 mpoeq12 N=AN=AiN,jNSiMj=iA,jASiMj
27 26 eqeq1d N=AN=AiN,jNSiMj=AASAMAiA,jASiMj=AASAMA
28 27 anidms N=AiN,jNSiMj=AASAMAiA,jASiMj=AASAMA
29 28 adantr N=AAViN,jNSiMj=AASAMAiA,jASiMj=AASAMA
30 29 3ad2ant2 RVN=AAVMBiN,jNSiMj=AASAMAiA,jASiMj=AASAMA
31 25 30 mpbird RVN=AAVMBiN,jNSiMj=AASAMA
32 14 31 eqtrd RVN=AAVMBTM=AASAMA