Metamath Proof Explorer


Theorem dchrisum0fmul

Description: The function F , the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of Shapiro, p. 382. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
dchrisum0f.f F=bvq|qbXLv
dchrisum0f.x φXD
dchrisum0fmul.a φA
dchrisum0fmul.b φB
dchrisum0fmul.m φAgcdB=1
Assertion dchrisum0fmul φFAB=FAFB

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 dchrisum0f.f F=bvq|qbXLv
8 dchrisum0f.x φXD
9 dchrisum0fmul.a φA
10 dchrisum0fmul.b φB
11 dchrisum0fmul.m φAgcdB=1
12 eqid q|qA=q|qA
13 eqid q|qB=q|qB
14 eqid q|qAB=q|qAB
15 8 adantr φjq|qAXD
16 elrabi jq|qAj
17 16 nnzd jq|qAj
18 17 adantl φjq|qAj
19 4 1 5 2 15 18 dchrzrhcl φjq|qAXLj
20 8 adantr φkq|qBXD
21 elrabi kq|qBk
22 21 nnzd kq|qBk
23 22 adantl φkq|qBk
24 4 1 5 2 20 23 dchrzrhcl φkq|qBXLk
25 17 22 anim12i jq|qAkq|qBjk
26 8 adantr φjkXD
27 simprl φjkj
28 simprr φjkk
29 4 1 5 2 26 27 28 dchrzrhmul φjkXLjk=XLjXLk
30 29 eqcomd φjkXLjXLk=XLjk
31 25 30 sylan2 φjq|qAkq|qBXLjXLk=XLjk
32 2fveq3 i=jkXLi=XLjk
33 9 10 11 12 13 14 19 24 31 32 fsumdvdsmul φjq|qAXLjkq|qBXLk=iq|qABXLi
34 1 2 3 4 5 6 7 dchrisum0fval AFA=jq|qAXLj
35 9 34 syl φFA=jq|qAXLj
36 1 2 3 4 5 6 7 dchrisum0fval BFB=kq|qBXLk
37 10 36 syl φFB=kq|qBXLk
38 35 37 oveq12d φFAFB=jq|qAXLjkq|qBXLk
39 9 10 nnmulcld φAB
40 1 2 3 4 5 6 7 dchrisum0fval ABFAB=iq|qABXLi
41 39 40 syl φFAB=iq|qABXLi
42 33 38 41 3eqtr4rd φFAB=FAFB