Description: The function F is a real function. (Contributed by Mario Carneiro, 5-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpvmasum.z | |
|
rpvmasum.l | |
||
rpvmasum.a | |
||
rpvmasum2.g | |
||
rpvmasum2.d | |
||
rpvmasum2.1 | |
||
dchrisum0f.f | |
||
dchrisum0f.x | |
||
dchrisum0flb.r | |
||
Assertion | dchrisum0ff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | |
|
2 | rpvmasum.l | |
|
3 | rpvmasum.a | |
|
4 | rpvmasum2.g | |
|
5 | rpvmasum2.d | |
|
6 | rpvmasum2.1 | |
|
7 | dchrisum0f.f | |
|
8 | dchrisum0f.x | |
|
9 | dchrisum0flb.r | |
|
10 | fzfid | |
|
11 | dvdsssfz1 | |
|
12 | 11 | adantl | |
13 | 10 12 | ssfid | |
14 | 9 | ad2antrr | |
15 | 3 | nnnn0d | |
16 | eqid | |
|
17 | 1 16 2 | znzrhfo | |
18 | fof | |
|
19 | 15 17 18 | 3syl | |
20 | 19 | adantr | |
21 | elrabi | |
|
22 | 21 | nnzd | |
23 | ffvelcdm | |
|
24 | 20 22 23 | syl2an | |
25 | 14 24 | ffvelcdmd | |
26 | 13 25 | fsumrecl | |
27 | breq2 | |
|
28 | 27 | rabbidv | |
29 | 28 | sumeq1d | |
30 | 2fveq3 | |
|
31 | 30 | cbvsumv | |
32 | 29 31 | eqtrdi | |
33 | 32 | cbvmptv | |
34 | 7 33 | eqtri | |
35 | 26 34 | fmptd | |