Metamath Proof Explorer


Theorem dchrisum0ff

Description: The function F is a real function. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
dchrisum0f.f F=bvq|qbXLv
dchrisum0f.x φXD
dchrisum0flb.r φX:BaseZ
Assertion dchrisum0ff φF:

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 dchrisum0f.f F=bvq|qbXLv
8 dchrisum0f.x φXD
9 dchrisum0flb.r φX:BaseZ
10 fzfid φn1nFin
11 dvdsssfz1 nq|qn1n
12 11 adantl φnq|qn1n
13 10 12 ssfid φnq|qnFin
14 9 ad2antrr φnmq|qnX:BaseZ
15 3 nnnn0d φN0
16 eqid BaseZ=BaseZ
17 1 16 2 znzrhfo N0L:ontoBaseZ
18 fof L:ontoBaseZL:BaseZ
19 15 17 18 3syl φL:BaseZ
20 19 adantr φnL:BaseZ
21 elrabi mq|qnm
22 21 nnzd mq|qnm
23 ffvelcdm L:BaseZmLmBaseZ
24 20 22 23 syl2an φnmq|qnLmBaseZ
25 14 24 ffvelcdmd φnmq|qnXLm
26 13 25 fsumrecl φnmq|qnXLm
27 breq2 b=nqbqn
28 27 rabbidv b=nq|qb=q|qn
29 28 sumeq1d b=nvq|qbXLv=vq|qnXLv
30 2fveq3 v=mXLv=XLm
31 30 cbvsumv vq|qnXLv=mq|qnXLm
32 29 31 eqtrdi b=nvq|qbXLv=mq|qnXLm
33 32 cbvmptv bvq|qbXLv=nmq|qnXLm
34 7 33 eqtri F=nmq|qnXLm
35 26 34 fmptd φF: