Metamath Proof Explorer


Theorem dchrmulid2

Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrn0.b B = Base Z
dchrn0.u U = Unit Z
dchr1cl.o 1 ˙ = k B if k U 1 0
dchrmulid2.t · ˙ = + G
dchrmulid2.x φ X D
Assertion dchrmulid2 φ 1 ˙ · ˙ X = X

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrn0.b B = Base Z
5 dchrn0.u U = Unit Z
6 dchr1cl.o 1 ˙ = k B if k U 1 0
7 dchrmulid2.t · ˙ = + G
8 dchrmulid2.x φ X D
9 1 3 dchrrcl X D N
10 8 9 syl φ N
11 1 2 3 4 5 6 10 dchr1cl φ 1 ˙ D
12 1 2 3 7 11 8 dchrmul φ 1 ˙ · ˙ X = 1 ˙ × f X
13 oveq1 1 = if k U 1 0 1 X k = if k U 1 0 X k
14 13 eqeq1d 1 = if k U 1 0 1 X k = X k if k U 1 0 X k = X k
15 oveq1 0 = if k U 1 0 0 X k = if k U 1 0 X k
16 15 eqeq1d 0 = if k U 1 0 0 X k = X k if k U 1 0 X k = X k
17 1 2 3 4 8 dchrf φ X : B
18 17 ffvelrnda φ k B X k
19 18 adantr φ k B k U X k
20 19 mulid2d φ k B k U 1 X k = X k
21 0cn 0
22 21 mul02i 0 0 = 0
23 1 2 4 5 10 3 dchrelbas2 φ X D X mulGrp Z MndHom mulGrp fld k B X k 0 k U
24 8 23 mpbid φ X mulGrp Z MndHom mulGrp fld k B X k 0 k U
25 24 simprd φ k B X k 0 k U
26 25 r19.21bi φ k B X k 0 k U
27 26 necon1bd φ k B ¬ k U X k = 0
28 27 imp φ k B ¬ k U X k = 0
29 28 oveq2d φ k B ¬ k U 0 X k = 0 0
30 22 29 28 3eqtr4a φ k B ¬ k U 0 X k = X k
31 14 16 20 30 ifbothda φ k B if k U 1 0 X k = X k
32 31 mpteq2dva φ k B if k U 1 0 X k = k B X k
33 4 fvexi B V
34 33 a1i φ B V
35 ax-1cn 1
36 35 21 ifcli if k U 1 0
37 36 a1i φ k B if k U 1 0
38 6 a1i φ 1 ˙ = k B if k U 1 0
39 17 feqmptd φ X = k B X k
40 34 37 18 38 39 offval2 φ 1 ˙ × f X = k B if k U 1 0 X k
41 32 40 39 3eqtr4d φ 1 ˙ × f X = X
42 12 41 eqtrd φ 1 ˙ · ˙ X = X