Metamath Proof Explorer


Theorem derangen

Description: The derangement number is a cardinal invariant, i.e. it only depends on the size of a set and not on its contents. (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypothesis derang.d D=xFinf|f:x1-1 ontoxyxfyy
Assertion derangen ABBFinDA=DB

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 1 derangenlem ABBFinDADB
3 ensym ABBA
4 3 adantr ABBFinBA
5 enfi ABAFinBFin
6 5 biimpar ABBFinAFin
7 1 derangenlem BAAFinDBDA
8 4 6 7 syl2anc ABBFinDBDA
9 1 derangf D:Fin0
10 9 ffvelcdmi AFinDA0
11 6 10 syl ABBFinDA0
12 9 ffvelcdmi BFinDB0
13 12 adantl ABBFinDB0
14 nn0re DA0DA
15 nn0re DB0DB
16 letri3 DADBDA=DBDADBDBDA
17 14 15 16 syl2an DA0DB0DA=DBDADBDBDA
18 11 13 17 syl2anc ABBFinDA=DBDADBDBDA
19 2 8 18 mpbir2and ABBFinDA=DB