Description: Equivalence of function value and binary relation, analogous to fnbrfvb or funbrfvb . B e. _V is required, because otherwise A F B <-> (/) e. F can be true, but ( F '''' A ) = B is always false (because of dfatafv2ex ). (Contributed by AV, 6-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | dfatbrafv2b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | dfatafv2ex | |
|
3 | 2 | adantr | |
4 | eqeq2 | |
|
5 | breq2 | |
|
6 | 4 5 | bibi12d | |
7 | 6 | adantl | |
8 | dfdfat2 | |
|
9 | tz6.12c-afv2 | |
|
10 | 8 9 | simplbiim | |
11 | 10 | adantr | |
12 | 3 7 11 | vtocld | |
13 | 1 12 | mpbii | |
14 | breq2 | |
|
15 | 13 14 | syl5ibcom | |
16 | df-dfat | |
|
17 | simpll | |
|
18 | simpr | |
|
19 | simpr | |
|
20 | 19 | adantr | |
21 | 17 18 20 | jca31 | |
22 | 16 21 | sylanb | |
23 | funressnbrafv2 | |
|
24 | 22 23 | syl | |
25 | 15 24 | impbid | |