Metamath Proof Explorer


Theorem dfatbrafv2b

Description: Equivalence of function value and binary relation, analogous to fnbrfvb or funbrfvb . B e. _V is required, because otherwise A F B <-> (/) e. F can be true, but ( F '''' A ) = B is always false (because of dfatafv2ex ). (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion dfatbrafv2b FdefAtABWF''''A=BAFB

Proof

Step Hyp Ref Expression
1 eqid F''''A=F''''A
2 dfatafv2ex FdefAtAF''''AV
3 2 adantr FdefAtABWF''''AV
4 eqeq2 x=F''''AF''''A=xF''''A=F''''A
5 breq2 x=F''''AAFxAFF''''A
6 4 5 bibi12d x=F''''AF''''A=xAFxF''''A=F''''AAFF''''A
7 6 adantl FdefAtABWx=F''''AF''''A=xAFxF''''A=F''''AAFF''''A
8 dfdfat2 FdefAtAAdomF∃!xAFx
9 tz6.12c-afv2 ∃!xAFxF''''A=xAFx
10 8 9 simplbiim FdefAtAF''''A=xAFx
11 10 adantr FdefAtABWF''''A=xAFx
12 3 7 11 vtocld FdefAtABWF''''A=F''''AAFF''''A
13 1 12 mpbii FdefAtABWAFF''''A
14 breq2 F''''A=BAFF''''AAFB
15 13 14 syl5ibcom FdefAtABWF''''A=BAFB
16 df-dfat FdefAtAAdomFFunFA
17 simpll AdomFFunFABWAdomF
18 simpr AdomFFunFABWBW
19 simpr AdomFFunFAFunFA
20 19 adantr AdomFFunFABWFunFA
21 17 18 20 jca31 AdomFFunFABWAdomFBWFunFA
22 16 21 sylanb FdefAtABWAdomFBWFunFA
23 funressnbrafv2 AdomFBWFunFAAFBF''''A=B
24 22 23 syl FdefAtABWAFBF''''A=B
25 15 24 impbid FdefAtABWF''''A=BAFB