Metamath Proof Explorer


Theorem dftermo3

Description: An alternate definition of df-termo depending on df-inito , without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024)

Ref Expression
Assertion dftermo3 TermO=InitOoppCatCat

Proof

Step Hyp Ref Expression
1 fvres cCatoppCatCatc=oppCatc
2 1 fveq2d cCatInitOoppCatCatc=InitOoppCatc
3 2 mpteq2ia cCatInitOoppCatCatc=cCatInitOoppCatc
4 initofn InitOFnCat
5 dffn2 InitOFnCatInitO:CatV
6 4 5 mpbi InitO:CatV
7 oppccatf oppCatCat:CatCat
8 fcompt InitO:CatVoppCatCat:CatCatInitOoppCatCat=cCatInitOoppCatCatc
9 6 7 8 mp2an InitOoppCatCat=cCatInitOoppCatCatc
10 dftermo2 TermO=cCatInitOoppCatc
11 3 9 10 3eqtr4ri TermO=InitOoppCatCat