Metamath Proof Explorer


Theorem diaf11N

Description: The partial isomorphism A for a lattice K is a one-to-one function. Part of Lemma M of Crawley p. 120 line 27. (Contributed by NM, 4-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1o.h H = LHyp K
dia1o.i I = DIsoA K W
Assertion diaf11N K HL W H I : dom I 1-1 onto ran I

Proof

Step Hyp Ref Expression
1 dia1o.h H = LHyp K
2 dia1o.i I = DIsoA K W
3 eqid Base K = Base K
4 eqid K = K
5 3 4 1 2 diafn K HL W H I Fn x Base K | x K W
6 fnfun I Fn x Base K | x K W Fun I
7 funfn Fun I I Fn dom I
8 6 7 sylib I Fn x Base K | x K W I Fn dom I
9 5 8 syl K HL W H I Fn dom I
10 eqidd K HL W H ran I = ran I
11 3 4 1 2 diaeldm K HL W H x dom I x Base K x K W
12 3 4 1 2 diaeldm K HL W H y dom I y Base K y K W
13 11 12 anbi12d K HL W H x dom I y dom I x Base K x K W y Base K y K W
14 3 4 1 2 dia11N K HL W H x Base K x K W y Base K y K W I x = I y x = y
15 14 biimpd K HL W H x Base K x K W y Base K y K W I x = I y x = y
16 15 3expib K HL W H x Base K x K W y Base K y K W I x = I y x = y
17 13 16 sylbid K HL W H x dom I y dom I I x = I y x = y
18 17 ralrimivv K HL W H x dom I y dom I I x = I y x = y
19 dff1o6 I : dom I 1-1 onto ran I I Fn dom I ran I = ran I x dom I y dom I I x = I y x = y
20 9 10 18 19 syl3anbrc K HL W H I : dom I 1-1 onto ran I