Metamath Proof Explorer


Theorem diaf11N

Description: The partial isomorphism A for a lattice K is a one-to-one function. Part of Lemma M of Crawley p. 120 line 27. (Contributed by NM, 4-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1o.h H=LHypK
dia1o.i I=DIsoAKW
Assertion diaf11N KHLWHI:domI1-1 ontoranI

Proof

Step Hyp Ref Expression
1 dia1o.h H=LHypK
2 dia1o.i I=DIsoAKW
3 eqid BaseK=BaseK
4 eqid K=K
5 3 4 1 2 diafn KHLWHIFnxBaseK|xKW
6 fnfun IFnxBaseK|xKWFunI
7 funfn FunIIFndomI
8 6 7 sylib IFnxBaseK|xKWIFndomI
9 5 8 syl KHLWHIFndomI
10 eqidd KHLWHranI=ranI
11 3 4 1 2 diaeldm KHLWHxdomIxBaseKxKW
12 3 4 1 2 diaeldm KHLWHydomIyBaseKyKW
13 11 12 anbi12d KHLWHxdomIydomIxBaseKxKWyBaseKyKW
14 3 4 1 2 dia11N KHLWHxBaseKxKWyBaseKyKWIx=Iyx=y
15 14 biimpd KHLWHxBaseKxKWyBaseKyKWIx=Iyx=y
16 15 3expib KHLWHxBaseKxKWyBaseKyKWIx=Iyx=y
17 13 16 sylbid KHLWHxdomIydomIIx=Iyx=y
18 17 ralrimivv KHLWHxdomIydomIIx=Iyx=y
19 dff1o6 I:domI1-1 ontoranIIFndomIranI=ranIxdomIydomIIx=Iyx=y
20 9 10 18 19 syl3anbrc KHLWHI:domI1-1 ontoranI