Metamath Proof Explorer


Theorem diaffval

Description: The partial isomorphism A for a lattice K . (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses diaval.b B=BaseK
diaval.l ˙=K
diaval.h H=LHypK
Assertion diaffval KVDIsoAK=wHxyB|y˙wfLTrnKw|trLKwf˙x

Proof

Step Hyp Ref Expression
1 diaval.b B=BaseK
2 diaval.l ˙=K
3 diaval.h H=LHypK
4 elex KVKV
5 fveq2 k=KLHypk=LHypK
6 5 3 eqtr4di k=KLHypk=H
7 fveq2 k=KBasek=BaseK
8 7 1 eqtr4di k=KBasek=B
9 fveq2 k=Kk=K
10 9 2 eqtr4di k=Kk=˙
11 10 breqd k=Kykwy˙w
12 8 11 rabeqbidv k=KyBasek|ykw=yB|y˙w
13 fveq2 k=KLTrnk=LTrnK
14 13 fveq1d k=KLTrnkw=LTrnKw
15 fveq2 k=KtrLk=trLK
16 15 fveq1d k=KtrLkw=trLKw
17 16 fveq1d k=KtrLkwf=trLKwf
18 eqidd k=Kx=x
19 17 10 18 breq123d k=KtrLkwfkxtrLKwf˙x
20 14 19 rabeqbidv k=KfLTrnkw|trLkwfkx=fLTrnKw|trLKwf˙x
21 12 20 mpteq12dv k=KxyBasek|ykwfLTrnkw|trLkwfkx=xyB|y˙wfLTrnKw|trLKwf˙x
22 6 21 mpteq12dv k=KwLHypkxyBasek|ykwfLTrnkw|trLkwfkx=wHxyB|y˙wfLTrnKw|trLKwf˙x
23 df-disoa DIsoA=kVwLHypkxyBasek|ykwfLTrnkw|trLkwfkx
24 22 23 3 mptfvmpt KVDIsoAK=wHxyB|y˙wfLTrnKw|trLKwf˙x
25 4 24 syl KVDIsoAK=wHxyB|y˙wfLTrnKw|trLKwf˙x