Metamath Proof Explorer


Theorem diafval

Description: The partial isomorphism A for a lattice K . (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses diaval.b B=BaseK
diaval.l ˙=K
diaval.h H=LHypK
diaval.t T=LTrnKW
diaval.r R=trLKW
diaval.i I=DIsoAKW
Assertion diafval KVWHI=xyB|y˙WfT|Rf˙x

Proof

Step Hyp Ref Expression
1 diaval.b B=BaseK
2 diaval.l ˙=K
3 diaval.h H=LHypK
4 diaval.t T=LTrnKW
5 diaval.r R=trLKW
6 diaval.i I=DIsoAKW
7 1 2 3 diaffval KVDIsoAK=wHxyB|y˙wfLTrnKw|trLKwf˙x
8 7 fveq1d KVDIsoAKW=wHxyB|y˙wfLTrnKw|trLKwf˙xW
9 6 8 eqtrid KVI=wHxyB|y˙wfLTrnKw|trLKwf˙xW
10 breq2 w=Wy˙wy˙W
11 10 rabbidv w=WyB|y˙w=yB|y˙W
12 fveq2 w=WLTrnKw=LTrnKW
13 12 4 eqtr4di w=WLTrnKw=T
14 fveq2 w=WtrLKw=trLKW
15 14 5 eqtr4di w=WtrLKw=R
16 15 fveq1d w=WtrLKwf=Rf
17 16 breq1d w=WtrLKwf˙xRf˙x
18 13 17 rabeqbidv w=WfLTrnKw|trLKwf˙x=fT|Rf˙x
19 11 18 mpteq12dv w=WxyB|y˙wfLTrnKw|trLKwf˙x=xyB|y˙WfT|Rf˙x
20 eqid wHxyB|y˙wfLTrnKw|trLKwf˙x=wHxyB|y˙wfLTrnKw|trLKwf˙x
21 1 fvexi BV
22 21 mptrabex xyB|y˙WfT|Rf˙xV
23 19 20 22 fvmpt WHwHxyB|y˙wfLTrnKw|trLKwf˙xW=xyB|y˙WfT|Rf˙x
24 9 23 sylan9eq KVWHI=xyB|y˙WfT|Rf˙x