Metamath Proof Explorer


Theorem diassdvaN

Description: The partial isomorphism A maps to a set of vectors in partial vector space A. (Contributed by NM, 1-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses diassdva.b B=BaseK
diassdva.l ˙=K
diassdva.h H=LHypK
diassdva.i I=DIsoAKW
diassdva.u U=DVecAKW
diassdva.v V=BaseU
Assertion diassdvaN KYWHXBX˙WIXV

Proof

Step Hyp Ref Expression
1 diassdva.b B=BaseK
2 diassdva.l ˙=K
3 diassdva.h H=LHypK
4 diassdva.i I=DIsoAKW
5 diassdva.u U=DVecAKW
6 diassdva.v V=BaseU
7 eqid LTrnKW=LTrnKW
8 eqid trLKW=trLKW
9 1 2 3 7 8 4 diaval KYWHXBX˙WIX=fLTrnKW|trLKWf˙X
10 ssrab2 fLTrnKW|trLKWf˙XLTrnKW
11 3 7 5 6 dvavbase KYWHV=LTrnKW
12 11 adantr KYWHXBX˙WV=LTrnKW
13 10 12 sseqtrrid KYWHXBX˙WfLTrnKW|trLKWf˙XV
14 9 13 eqsstrd KYWHXBX˙WIXV