Metamath Proof Explorer


Theorem diasslssN

Description: The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses diasslss.h H = LHyp K
diasslss.u U = DVecA K W
diasslss.i I = DIsoA K W
diasslss.s S = LSubSp U
Assertion diasslssN K HL W H ran I S

Proof

Step Hyp Ref Expression
1 diasslss.h H = LHyp K
2 diasslss.u U = DVecA K W
3 diasslss.i I = DIsoA K W
4 diasslss.s S = LSubSp U
5 1 3 diaf11N K HL W H I : dom I 1-1 onto ran I
6 f1ocnvfv2 I : dom I 1-1 onto ran I x ran I I I -1 x = x
7 5 6 sylan K HL W H x ran I I I -1 x = x
8 1 3 diacnvclN K HL W H x ran I I -1 x dom I
9 eqid Base K = Base K
10 eqid K = K
11 9 10 1 3 diaeldm K HL W H I -1 x dom I I -1 x Base K I -1 x K W
12 11 adantr K HL W H x ran I I -1 x dom I I -1 x Base K I -1 x K W
13 8 12 mpbid K HL W H x ran I I -1 x Base K I -1 x K W
14 9 10 1 2 3 4 dialss K HL W H I -1 x Base K I -1 x K W I I -1 x S
15 13 14 syldan K HL W H x ran I I I -1 x S
16 7 15 eqeltrrd K HL W H x ran I x S
17 16 ex K HL W H x ran I x S
18 17 ssrdv K HL W H ran I S