Metamath Proof Explorer


Theorem diaval

Description: The partial isomorphism A for a lattice K . Definition of isomorphism map in Crawley p. 120 line 24. (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses diaval.b B=BaseK
diaval.l ˙=K
diaval.h H=LHypK
diaval.t T=LTrnKW
diaval.r R=trLKW
diaval.i I=DIsoAKW
Assertion diaval KVWHXBX˙WIX=fT|Rf˙X

Proof

Step Hyp Ref Expression
1 diaval.b B=BaseK
2 diaval.l ˙=K
3 diaval.h H=LHypK
4 diaval.t T=LTrnKW
5 diaval.r R=trLKW
6 diaval.i I=DIsoAKW
7 1 2 3 4 5 6 diafval KVWHI=xyB|y˙WfT|Rf˙x
8 7 adantr KVWHXBX˙WI=xyB|y˙WfT|Rf˙x
9 8 fveq1d KVWHXBX˙WIX=xyB|y˙WfT|Rf˙xX
10 simpr KVWHXBX˙WXBX˙W
11 breq1 y=Xy˙WX˙W
12 11 elrab XyB|y˙WXBX˙W
13 10 12 sylibr KVWHXBX˙WXyB|y˙W
14 breq2 x=XRf˙xRf˙X
15 14 rabbidv x=XfT|Rf˙x=fT|Rf˙X
16 eqid xyB|y˙WfT|Rf˙x=xyB|y˙WfT|Rf˙x
17 4 fvexi TV
18 17 rabex fT|Rf˙XV
19 15 16 18 fvmpt XyB|y˙WxyB|y˙WfT|Rf˙xX=fT|Rf˙X
20 13 19 syl KVWHXBX˙WxyB|y˙WfT|Rf˙xX=fT|Rf˙X
21 9 20 eqtrd KVWHXBX˙WIX=fT|Rf˙X