Metamath Proof Explorer


Theorem dicffval

Description: The partial isomorphism C for a lattice K . (Contributed by NM, 15-Dec-2013)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
Assertion dicffval K V DIsoC K = w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 elex K V K V
5 fveq2 k = K LHyp k = LHyp K
6 5 3 eqtr4di k = K LHyp k = H
7 fveq2 k = K Atoms k = Atoms K
8 7 2 eqtr4di k = K Atoms k = A
9 fveq2 k = K k = K
10 9 1 eqtr4di k = K k = ˙
11 10 breqd k = K r k w r ˙ w
12 11 notbid k = K ¬ r k w ¬ r ˙ w
13 8 12 rabeqbidv k = K r Atoms k | ¬ r k w = r A | ¬ r ˙ w
14 fveq2 k = K LTrn k = LTrn K
15 14 fveq1d k = K LTrn k w = LTrn K w
16 fveq2 k = K oc k = oc K
17 16 fveq1d k = K oc k w = oc K w
18 17 fveqeq2d k = K g oc k w = q g oc K w = q
19 15 18 riotaeqbidv k = K ι g LTrn k w | g oc k w = q = ι g LTrn K w | g oc K w = q
20 19 fveq2d k = K s ι g LTrn k w | g oc k w = q = s ι g LTrn K w | g oc K w = q
21 20 eqeq2d k = K f = s ι g LTrn k w | g oc k w = q f = s ι g LTrn K w | g oc K w = q
22 fveq2 k = K TEndo k = TEndo K
23 22 fveq1d k = K TEndo k w = TEndo K w
24 23 eleq2d k = K s TEndo k w s TEndo K w
25 21 24 anbi12d k = K f = s ι g LTrn k w | g oc k w = q s TEndo k w f = s ι g LTrn K w | g oc K w = q s TEndo K w
26 25 opabbidv k = K f s | f = s ι g LTrn k w | g oc k w = q s TEndo k w = f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w
27 13 26 mpteq12dv k = K q r Atoms k | ¬ r k w f s | f = s ι g LTrn k w | g oc k w = q s TEndo k w = q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w
28 6 27 mpteq12dv k = K w LHyp k q r Atoms k | ¬ r k w f s | f = s ι g LTrn k w | g oc k w = q s TEndo k w = w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w
29 df-dic DIsoC = k V w LHyp k q r Atoms k | ¬ r k w f s | f = s ι g LTrn k w | g oc k w = q s TEndo k w
30 28 29 3 mptfvmpt K V DIsoC K = w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w
31 4 30 syl K V DIsoC K = w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w