Metamath Proof Explorer


Theorem dicn0

Description: The value of the partial isomorphism C is not empty. (Contributed by NM, 15-Feb-2014)

Ref Expression
Hypotheses dicn0.l ˙=K
dicn0.a A=AtomsK
dicn0.h H=LHypK
dicn0.i I=DIsoCKW
Assertion dicn0 KHLWHQA¬Q˙WIQ

Proof

Step Hyp Ref Expression
1 dicn0.l ˙=K
2 dicn0.a A=AtomsK
3 dicn0.h H=LHypK
4 dicn0.i I=DIsoCKW
5 simpl KHLWHQA¬Q˙WKHLWH
6 eqid ocK=ocK
7 1 6 2 3 lhpocnel KHLWHocKWA¬ocKW˙W
8 7 adantr KHLWHQA¬Q˙WocKWA¬ocKW˙W
9 simpr KHLWHQA¬Q˙WQA¬Q˙W
10 eqid LTrnKW=LTrnKW
11 eqid ιgLTrnKW|gocKW=Q=ιgLTrnKW|gocKW=Q
12 1 2 3 10 11 ltrniotacl KHLWHocKWA¬ocKW˙WQA¬Q˙WιgLTrnKW|gocKW=QLTrnKW
13 5 8 9 12 syl3anc KHLWHQA¬Q˙WιgLTrnKW|gocKW=QLTrnKW
14 eqid fLTrnKWIBaseK=fLTrnKWIBaseK
15 eqid BaseK=BaseK
16 14 15 tendo02 ιgLTrnKW|gocKW=QLTrnKWfLTrnKWIBaseKιgLTrnKW|gocKW=Q=IBaseK
17 13 16 syl KHLWHQA¬Q˙WfLTrnKWIBaseKιgLTrnKW|gocKW=Q=IBaseK
18 17 eqcomd KHLWHQA¬Q˙WIBaseK=fLTrnKWIBaseKιgLTrnKW|gocKW=Q
19 eqid TEndoKW=TEndoKW
20 15 3 10 19 14 tendo0cl KHLWHfLTrnKWIBaseKTEndoKW
21 20 adantr KHLWHQA¬Q˙WfLTrnKWIBaseKTEndoKW
22 eqid ocKW=ocKW
23 fvex BaseKV
24 resiexg BaseKVIBaseKV
25 23 24 ax-mp IBaseKV
26 fvex LTrnKWV
27 26 mptex fLTrnKWIBaseKV
28 1 2 3 22 10 19 4 25 27 dicopelval KHLWHQA¬Q˙WIBaseKfLTrnKWIBaseKIQIBaseK=fLTrnKWIBaseKιgLTrnKW|gocKW=QfLTrnKWIBaseKTEndoKW
29 18 21 28 mpbir2and KHLWHQA¬Q˙WIBaseKfLTrnKWIBaseKIQ
30 29 ne0d KHLWHQA¬Q˙WIQ