Description: If a set A is equinumerous to the successor of an ordinal M , then A with an element removed is equinumerous to M . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 16-Aug-2015) Avoid ax-pow . (Revised by BTernaryTau, 26-Aug-2024) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | dif1en | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | encv | |
|
3 | 2 | simpld | |
4 | 3 | 3anim1i | |
5 | bren | |
|
6 | sucidg | |
|
7 | f1ocnvdm | |
|
8 | 7 | 3adant2 | |
9 | f1ofvswap | |
|
10 | 8 9 | syld3an3 | |
11 | f1ocnvfv2 | |
|
12 | 11 | opeq2d | |
13 | 12 | preq1d | |
14 | 13 | uneq2d | |
15 | 14 | f1oeq1d | |
16 | 15 | 3adant2 | |
17 | 10 16 | mpbid | |
18 | 6 17 | syl3an3 | |
19 | 18 | 3adant3r1 | |
20 | f1ofun | |
|
21 | opex | |
|
22 | 21 | prid1 | |
23 | elun2 | |
|
24 | 22 23 | ax-mp | |
25 | funopfv | |
|
26 | 24 25 | mpi | |
27 | 19 20 26 | 3syl | |
28 | simpr2 | |
|
29 | f1ocnvfv | |
|
30 | 19 28 29 | syl2anc | |
31 | 27 30 | mpd | |
32 | 31 | sneqd | |
33 | 32 | difeq2d | |
34 | simpr1 | |
|
35 | 3simpc | |
|
36 | 35 | anim2i | |
37 | 3anass | |
|
38 | 36 37 | sylibr | |
39 | 34 38 | jca | |
40 | simpl | |
|
41 | simpr3 | |
|
42 | 40 41 | jca | |
43 | simpr | |
|
44 | 42 43 | jca | |
45 | vex | |
|
46 | 45 | resex | |
47 | prex | |
|
48 | 46 47 | unex | |
49 | dif1enlem | |
|
50 | 48 49 | mp3anl1 | |
51 | 18 50 | sylan2 | |
52 | 39 44 51 | 3syl | |
53 | 33 52 | eqbrtrrd | |
54 | 53 | ex | |
55 | 54 | exlimiv | |
56 | 5 55 | sylbi | |
57 | 1 4 56 | sylc | |
58 | 57 | 3comr | |