Metamath Proof Explorer


Theorem dif1en

Description: If a set A is equinumerous to the successor of an ordinal M , then A with an element removed is equinumerous to M . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 16-Aug-2015) Avoid ax-pow . (Revised by BTernaryTau, 26-Aug-2024) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025)

Ref Expression
Assertion dif1en MOnAsucMXAAXM

Proof

Step Hyp Ref Expression
1 simp1 AsucMXAMOnAsucM
2 encv AsucMAVsucMV
3 2 simpld AsucMAV
4 3 3anim1i AsucMXAMOnAVXAMOn
5 bren AsucMff:A1-1 ontosucM
6 sucidg MOnMsucM
7 f1ocnvdm f:A1-1 ontosucMMsucMf-1MA
8 7 3adant2 f:A1-1 ontosucMXAMsucMf-1MA
9 f1ofvswap f:A1-1 ontosucMXAf-1MAfAXf-1MXff-1Mf-1MfX:A1-1 ontosucM
10 8 9 syld3an3 f:A1-1 ontosucMXAMsucMfAXf-1MXff-1Mf-1MfX:A1-1 ontosucM
11 f1ocnvfv2 f:A1-1 ontosucMMsucMff-1M=M
12 11 opeq2d f:A1-1 ontosucMMsucMXff-1M=XM
13 12 preq1d f:A1-1 ontosucMMsucMXff-1Mf-1MfX=XMf-1MfX
14 13 uneq2d f:A1-1 ontosucMMsucMfAXf-1MXff-1Mf-1MfX=fAXf-1MXMf-1MfX
15 14 f1oeq1d f:A1-1 ontosucMMsucMfAXf-1MXff-1Mf-1MfX:A1-1 ontosucMfAXf-1MXMf-1MfX:A1-1 ontosucM
16 15 3adant2 f:A1-1 ontosucMXAMsucMfAXf-1MXff-1Mf-1MfX:A1-1 ontosucMfAXf-1MXMf-1MfX:A1-1 ontosucM
17 10 16 mpbid f:A1-1 ontosucMXAMsucMfAXf-1MXMf-1MfX:A1-1 ontosucM
18 6 17 syl3an3 f:A1-1 ontosucMXAMOnfAXf-1MXMf-1MfX:A1-1 ontosucM
19 18 3adant3r1 f:A1-1 ontosucMAVXAMOnfAXf-1MXMf-1MfX:A1-1 ontosucM
20 f1ofun fAXf-1MXMf-1MfX:A1-1 ontosucMFunfAXf-1MXMf-1MfX
21 opex XMV
22 21 prid1 XMXMf-1MfX
23 elun2 XMXMf-1MfXXMfAXf-1MXMf-1MfX
24 22 23 ax-mp XMfAXf-1MXMf-1MfX
25 funopfv FunfAXf-1MXMf-1MfXXMfAXf-1MXMf-1MfXfAXf-1MXMf-1MfXX=M
26 24 25 mpi FunfAXf-1MXMf-1MfXfAXf-1MXMf-1MfXX=M
27 19 20 26 3syl f:A1-1 ontosucMAVXAMOnfAXf-1MXMf-1MfXX=M
28 simpr2 f:A1-1 ontosucMAVXAMOnXA
29 f1ocnvfv fAXf-1MXMf-1MfX:A1-1 ontosucMXAfAXf-1MXMf-1MfXX=MfAXf-1MXMf-1MfX-1M=X
30 19 28 29 syl2anc f:A1-1 ontosucMAVXAMOnfAXf-1MXMf-1MfXX=MfAXf-1MXMf-1MfX-1M=X
31 27 30 mpd f:A1-1 ontosucMAVXAMOnfAXf-1MXMf-1MfX-1M=X
32 31 sneqd f:A1-1 ontosucMAVXAMOnfAXf-1MXMf-1MfX-1M=X
33 32 difeq2d f:A1-1 ontosucMAVXAMOnAfAXf-1MXMf-1MfX-1M=AX
34 simpr1 f:A1-1 ontosucMAVXAMOnAV
35 3simpc AVXAMOnXAMOn
36 35 anim2i f:A1-1 ontosucMAVXAMOnf:A1-1 ontosucMXAMOn
37 3anass f:A1-1 ontosucMXAMOnf:A1-1 ontosucMXAMOn
38 36 37 sylibr f:A1-1 ontosucMAVXAMOnf:A1-1 ontosucMXAMOn
39 34 38 jca f:A1-1 ontosucMAVXAMOnAVf:A1-1 ontosucMXAMOn
40 simpl AVf:A1-1 ontosucMXAMOnAV
41 simpr3 AVf:A1-1 ontosucMXAMOnMOn
42 40 41 jca AVf:A1-1 ontosucMXAMOnAVMOn
43 simpr AVf:A1-1 ontosucMXAMOnf:A1-1 ontosucMXAMOn
44 42 43 jca AVf:A1-1 ontosucMXAMOnAVMOnf:A1-1 ontosucMXAMOn
45 vex fV
46 45 resex fAXf-1MV
47 prex XMf-1MfXV
48 46 47 unex fAXf-1MXMf-1MfXV
49 dif1enlem fAXf-1MXMf-1MfXVAVMOnfAXf-1MXMf-1MfX:A1-1 ontosucMAfAXf-1MXMf-1MfX-1MM
50 48 49 mp3anl1 AVMOnfAXf-1MXMf-1MfX:A1-1 ontosucMAfAXf-1MXMf-1MfX-1MM
51 18 50 sylan2 AVMOnf:A1-1 ontosucMXAMOnAfAXf-1MXMf-1MfX-1MM
52 39 44 51 3syl f:A1-1 ontosucMAVXAMOnAfAXf-1MXMf-1MfX-1MM
53 33 52 eqbrtrrd f:A1-1 ontosucMAVXAMOnAXM
54 53 ex f:A1-1 ontosucMAVXAMOnAXM
55 54 exlimiv ff:A1-1 ontosucMAVXAMOnAXM
56 5 55 sylbi AsucMAVXAMOnAXM
57 1 4 56 sylc AsucMXAMOnAXM
58 57 3comr MOnAsucMXAAXM