Metamath Proof Explorer


Theorem dih0cnv

Description: The isomorphism H converse value of the zero subspace is the lattice zero. (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses dih0cnv.h H=LHypK
dih0cnv.o 0˙=0.K
dih0cnv.i I=DIsoHKW
dih0cnv.u U=DVecHKW
dih0cnv.z Z=0U
Assertion dih0cnv KHLWHI-1Z=0˙

Proof

Step Hyp Ref Expression
1 dih0cnv.h H=LHypK
2 dih0cnv.o 0˙=0.K
3 dih0cnv.i I=DIsoHKW
4 dih0cnv.u U=DVecHKW
5 dih0cnv.z Z=0U
6 2 1 3 4 5 dih0 KHLWHI0˙=Z
7 6 fveq2d KHLWHI-1I0˙=I-1Z
8 hlatl KHLKAtLat
9 8 adantr KHLWHKAtLat
10 eqid BaseK=BaseK
11 10 2 atl0cl KAtLat0˙BaseK
12 9 11 syl KHLWH0˙BaseK
13 10 1 3 dihcnvid1 KHLWH0˙BaseKI-1I0˙=0˙
14 12 13 mpdan KHLWHI-1I0˙=0˙
15 7 14 eqtr3d KHLWHI-1Z=0˙