Metamath Proof Explorer


Theorem dihf11lem

Description: Functionality of the isomorphism H. (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihf11.b B=BaseK
dihf11.h H=LHypK
dihf11.i I=DIsoHKW
dihf11.u U=DVecHKW
dihf11.s S=LSubSpU
Assertion dihf11lem KHLWHI:BS

Proof

Step Hyp Ref Expression
1 dihf11.b B=BaseK
2 dihf11.h H=LHypK
3 dihf11.i I=DIsoHKW
4 dihf11.u U=DVecHKW
5 dihf11.s S=LSubSpU
6 fvex DIsoBKWxV
7 riotaex ιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKWV
8 6 7 ifex ifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKWV
9 8 rgenw xBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKWV
10 9 a1i KHLWHxBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKWV
11 eqid xBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKW=xBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKW
12 11 mptfng xBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKWVxBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKWFnB
13 10 12 sylib KHLWHxBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKWFnB
14 eqid K=K
15 eqid joinK=joinK
16 eqid meetK=meetK
17 eqid AtomsK=AtomsK
18 eqid DIsoBKW=DIsoBKW
19 eqid DIsoCKW=DIsoCKW
20 eqid LSSumU=LSSumU
21 1 14 15 16 17 2 3 18 19 4 5 20 dihfval KHLWHI=xBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKW
22 21 fneq1d KHLWHIFnBxBifxKWDIsoBKWxιuS|qAtomsK¬qKWqjoinKxmeetKW=xu=DIsoCKWqLSSumUDIsoBKWxmeetKWFnB
23 13 22 mpbird KHLWHIFnB
24 1 2 3 4 5 dihlss KHLWHyBIyS
25 24 ralrimiva KHLWHyBIyS
26 fnfvrnss IFnByBIySranIS
27 23 25 26 syl2anc KHLWHranIS
28 df-f I:BSIFnBranIS
29 23 27 28 sylanbrc KHLWHI:BS