Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem9.b | |
|
dihmeetlem9.l | |
||
dihmeetlem9.h | |
||
dihmeetlem9.j | |
||
dihmeetlem9.m | |
||
dihmeetlem9.a | |
||
dihmeetlem9.u | |
||
dihmeetlem9.s | |
||
dihmeetlem9.i | |
||
Assertion | dihmeetlem11N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem9.b | |
|
2 | dihmeetlem9.l | |
|
3 | dihmeetlem9.h | |
|
4 | dihmeetlem9.j | |
|
5 | dihmeetlem9.m | |
|
6 | dihmeetlem9.a | |
|
7 | dihmeetlem9.u | |
|
8 | dihmeetlem9.s | |
|
9 | dihmeetlem9.i | |
|
10 | 1 2 3 4 5 6 7 8 9 | dihmeetlem10N | |
11 | 10 | ineq1d | |
12 | inass | |
|
13 | simpl1l | |
|
14 | 13 | hllatd | |
15 | simpl3 | |
|
16 | simprll | |
|
17 | 1 6 | atbase | |
18 | 16 17 | syl | |
19 | 1 2 4 | latlej1 | |
20 | 14 15 18 19 | syl3anc | |
21 | simpl1 | |
|
22 | 1 4 | latjcl | |
23 | 14 15 18 22 | syl3anc | |
24 | 1 2 3 9 | dihord | |
25 | 21 15 23 24 | syl3anc | |
26 | 20 25 | mpbird | |
27 | sseqin2 | |
|
28 | 26 27 | sylib | |
29 | 28 | ineq2d | |
30 | 12 29 | eqtrid | |
31 | 11 30 | eqtrd | |