Metamath Proof Explorer


Theorem dihmeetlem11N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem9.b B=BaseK
dihmeetlem9.l ˙=K
dihmeetlem9.h H=LHypK
dihmeetlem9.j ˙=joinK
dihmeetlem9.m ˙=meetK
dihmeetlem9.a A=AtomsK
dihmeetlem9.u U=DVecHKW
dihmeetlem9.s ˙=LSSumU
dihmeetlem9.i I=DIsoHKW
Assertion dihmeetlem11N KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙pIY=IXIY

Proof

Step Hyp Ref Expression
1 dihmeetlem9.b B=BaseK
2 dihmeetlem9.l ˙=K
3 dihmeetlem9.h H=LHypK
4 dihmeetlem9.j ˙=joinK
5 dihmeetlem9.m ˙=meetK
6 dihmeetlem9.a A=AtomsK
7 dihmeetlem9.u U=DVecHKW
8 dihmeetlem9.s ˙=LSSumU
9 dihmeetlem9.i I=DIsoHKW
10 1 2 3 4 5 6 7 8 9 dihmeetlem10N KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙p=IXIY˙p
11 10 ineq1d KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙pIY=IXIY˙pIY
12 inass IXIY˙pIY=IXIY˙pIY
13 simpl1l KHLWHXBYBpA¬p˙Wp˙XKHL
14 13 hllatd KHLWHXBYBpA¬p˙Wp˙XKLat
15 simpl3 KHLWHXBYBpA¬p˙Wp˙XYB
16 simprll KHLWHXBYBpA¬p˙Wp˙XpA
17 1 6 atbase pApB
18 16 17 syl KHLWHXBYBpA¬p˙Wp˙XpB
19 1 2 4 latlej1 KLatYBpBY˙Y˙p
20 14 15 18 19 syl3anc KHLWHXBYBpA¬p˙Wp˙XY˙Y˙p
21 simpl1 KHLWHXBYBpA¬p˙Wp˙XKHLWH
22 1 4 latjcl KLatYBpBY˙pB
23 14 15 18 22 syl3anc KHLWHXBYBpA¬p˙Wp˙XY˙pB
24 1 2 3 9 dihord KHLWHYBY˙pBIYIY˙pY˙Y˙p
25 21 15 23 24 syl3anc KHLWHXBYBpA¬p˙Wp˙XIYIY˙pY˙Y˙p
26 20 25 mpbird KHLWHXBYBpA¬p˙Wp˙XIYIY˙p
27 sseqin2 IYIY˙pIY˙pIY=IY
28 26 27 sylib KHLWHXBYBpA¬p˙Wp˙XIY˙pIY=IY
29 28 ineq2d KHLWHXBYBpA¬p˙Wp˙XIXIY˙pIY=IXIY
30 12 29 eqtrid KHLWHXBYBpA¬p˙Wp˙XIXIY˙pIY=IXIY
31 11 30 eqtrd KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙pIY=IXIY