Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem3.b | |
|
dihmeetlem3.l | |
||
dihmeetlem3.j | |
||
dihmeetlem3.m | |
||
dihmeetlem3.a | |
||
dihmeetlem3.h | |
||
Assertion | dihmeetlem3N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem3.b | |
|
2 | dihmeetlem3.l | |
|
3 | dihmeetlem3.j | |
|
4 | dihmeetlem3.m | |
|
5 | dihmeetlem3.a | |
|
6 | dihmeetlem3.h | |
|
7 | simp2lr | |
|
8 | oveq1 | |
|
9 | simpr | |
|
10 | 8 9 | sylan9eqr | |
11 | simp11l | |
|
12 | 11 | hllatd | |
13 | simp2ll | |
|
14 | 1 5 | atbase | |
15 | 13 14 | syl | |
16 | simp12l | |
|
17 | simp12r | |
|
18 | 1 4 | latmcl | |
19 | 12 16 17 18 | syl3anc | |
20 | simp11r | |
|
21 | 1 6 | lhpbase | |
22 | 20 21 | syl | |
23 | 1 4 | latmcl | |
24 | 12 16 22 23 | syl3anc | |
25 | 1 2 3 | latlej1 | |
26 | 12 15 24 25 | syl3anc | |
27 | simp2r | |
|
28 | 26 27 | breqtrd | |
29 | 1 4 | latmcl | |
30 | 12 17 22 29 | syl3anc | |
31 | 1 2 3 | latlej1 | |
32 | 12 15 30 31 | syl3anc | |
33 | simp3 | |
|
34 | 32 33 | breqtrd | |
35 | 1 2 4 | latlem12 | |
36 | 12 15 16 17 35 | syl13anc | |
37 | 28 34 36 | mpbi2and | |
38 | simp13 | |
|
39 | 1 2 12 15 19 22 37 38 | lattrd | |
40 | 39 | 3exp | |
41 | 10 40 | syl7 | |
42 | 41 | exp4a | |
43 | 42 | 3imp | |
44 | 43 | necon3bd | |
45 | 7 44 | mpd | |