Metamath Proof Explorer


Theorem dihmeetlem3N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem3.b B=BaseK
dihmeetlem3.l ˙=K
dihmeetlem3.j ˙=joinK
dihmeetlem3.m ˙=meetK
dihmeetlem3.a A=AtomsK
dihmeetlem3.h H=LHypK
Assertion dihmeetlem3N KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XRA¬R˙WR˙Y˙W=YQR

Proof

Step Hyp Ref Expression
1 dihmeetlem3.b B=BaseK
2 dihmeetlem3.l ˙=K
3 dihmeetlem3.j ˙=joinK
4 dihmeetlem3.m ˙=meetK
5 dihmeetlem3.a A=AtomsK
6 dihmeetlem3.h H=LHypK
7 simp2lr KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XRA¬R˙WR˙Y˙W=Y¬Q˙W
8 oveq1 Q=RQ˙Y˙W=R˙Y˙W
9 simpr RA¬R˙WR˙Y˙W=YR˙Y˙W=Y
10 8 9 sylan9eqr RA¬R˙WR˙Y˙W=YQ=RQ˙Y˙W=Y
11 simp11l KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YKHL
12 11 hllatd KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YKLat
13 simp2ll KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQA
14 1 5 atbase QAQB
15 13 14 syl KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQB
16 simp12l KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YXB
17 simp12r KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YYB
18 1 4 latmcl KLatXBYBX˙YB
19 12 16 17 18 syl3anc KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YX˙YB
20 simp11r KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YWH
21 1 6 lhpbase WHWB
22 20 21 syl KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YWB
23 1 4 latmcl KLatXBWBX˙WB
24 12 16 22 23 syl3anc KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YX˙WB
25 1 2 3 latlej1 KLatQBX˙WBQ˙Q˙X˙W
26 12 15 24 25 syl3anc KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙Q˙X˙W
27 simp2r KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙X˙W=X
28 26 27 breqtrd KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙X
29 1 4 latmcl KLatYBWBY˙WB
30 12 17 22 29 syl3anc KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YY˙WB
31 1 2 3 latlej1 KLatQBY˙WBQ˙Q˙Y˙W
32 12 15 30 31 syl3anc KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙Q˙Y˙W
33 simp3 KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙Y˙W=Y
34 32 33 breqtrd KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙Y
35 1 2 4 latlem12 KLatQBXBYBQ˙XQ˙YQ˙X˙Y
36 12 15 16 17 35 syl13anc KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙XQ˙YQ˙X˙Y
37 28 34 36 mpbi2and KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙X˙Y
38 simp13 KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YX˙Y˙W
39 1 2 12 15 19 22 37 38 lattrd KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙W
40 39 3exp KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XQ˙Y˙W=YQ˙W
41 10 40 syl7 KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XRA¬R˙WR˙Y˙W=YQ=RQ˙W
42 41 exp4a KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XRA¬R˙WR˙Y˙W=YQ=RQ˙W
43 42 3imp KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XRA¬R˙WR˙Y˙W=YQ=RQ˙W
44 43 necon3bd KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XRA¬R˙WR˙Y˙W=Y¬Q˙WQR
45 7 44 mpd KHLWHXBYBX˙Y˙WQA¬Q˙WQ˙X˙W=XRA¬R˙WR˙Y˙W=YQR