Metamath Proof Explorer


Theorem dihmeetlem6

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014)

Ref Expression
Hypotheses dihmeetlem6.b B=BaseK
dihmeetlem6.l ˙=K
dihmeetlem6.h H=LHypK
dihmeetlem6.j ˙=joinK
dihmeetlem6.m ˙=meetK
dihmeetlem6.a A=AtomsK
Assertion dihmeetlem6 KHLWHXBYBQA¬Q˙WQ˙X¬X˙Y˙Q˙W

Proof

Step Hyp Ref Expression
1 dihmeetlem6.b B=BaseK
2 dihmeetlem6.l ˙=K
3 dihmeetlem6.h H=LHypK
4 dihmeetlem6.j ˙=joinK
5 dihmeetlem6.m ˙=meetK
6 dihmeetlem6.a A=AtomsK
7 simprlr KHLWHXBYBQA¬Q˙WQ˙X¬Q˙W
8 simpl1l KHLWHXBYBQA¬Q˙WQ˙XKHL
9 8 hllatd KHLWHXBYBQA¬Q˙WQ˙XKLat
10 simpl2 KHLWHXBYBQA¬Q˙WQ˙XXB
11 simpl3 KHLWHXBYBQA¬Q˙WQ˙XYB
12 1 5 latmcl KLatXBYBX˙YB
13 9 10 11 12 syl3anc KHLWHXBYBQA¬Q˙WQ˙XX˙YB
14 simprll KHLWHXBYBQA¬Q˙WQ˙XQA
15 1 6 atbase QAQB
16 14 15 syl KHLWHXBYBQA¬Q˙WQ˙XQB
17 simpl1r KHLWHXBYBQA¬Q˙WQ˙XWH
18 1 3 lhpbase WHWB
19 17 18 syl KHLWHXBYBQA¬Q˙WQ˙XWB
20 1 2 4 latjle12 KLatX˙YBQBWBX˙Y˙WQ˙WX˙Y˙Q˙W
21 9 13 16 19 20 syl13anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WQ˙WX˙Y˙Q˙W
22 simpr X˙Y˙WQ˙WQ˙W
23 21 22 syl6bir KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙Q˙WQ˙W
24 7 23 mtod KHLWHXBYBQA¬Q˙WQ˙X¬X˙Y˙Q˙W
25 simprr KHLWHXBYBQA¬Q˙WQ˙XQ˙X
26 1 2 4 5 6 dihmeetlem5 KHLXBYBQAQ˙XX˙Y˙Q=X˙Y˙Q
27 8 10 11 14 25 26 syl32anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙Q=X˙Y˙Q
28 27 breq1d KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙Q˙WX˙Y˙Q˙W
29 24 28 mtbird KHLWHXBYBQA¬Q˙WQ˙X¬X˙Y˙Q˙W