Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem6.b | |
|
dihmeetlem6.l | |
||
dihmeetlem6.h | |
||
dihmeetlem6.j | |
||
dihmeetlem6.m | |
||
dihmeetlem6.a | |
||
Assertion | dihmeetlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem6.b | |
|
2 | dihmeetlem6.l | |
|
3 | dihmeetlem6.h | |
|
4 | dihmeetlem6.j | |
|
5 | dihmeetlem6.m | |
|
6 | dihmeetlem6.a | |
|
7 | simprlr | |
|
8 | simpl1l | |
|
9 | 8 | hllatd | |
10 | simpl2 | |
|
11 | simpl3 | |
|
12 | 1 5 | latmcl | |
13 | 9 10 11 12 | syl3anc | |
14 | simprll | |
|
15 | 1 6 | atbase | |
16 | 14 15 | syl | |
17 | simpl1r | |
|
18 | 1 3 | lhpbase | |
19 | 17 18 | syl | |
20 | 1 2 4 | latjle12 | |
21 | 9 13 16 19 20 | syl13anc | |
22 | simpr | |
|
23 | 21 22 | syl6bir | |
24 | 7 23 | mtod | |
25 | simprr | |
|
26 | 1 2 4 5 6 | dihmeetlem5 | |
27 | 8 10 11 14 25 26 | syl32anc | |
28 | 27 | breq1d | |
29 | 24 28 | mtbird | |