Step |
Hyp |
Ref |
Expression |
1 |
|
dihprrn.h |
|
2 |
|
dihprrn.u |
|
3 |
|
dihprrn.v |
|
4 |
|
dihprrn.n |
|
5 |
|
dihprrn.i |
|
6 |
|
dihprrn.k |
|
7 |
|
dihprrn.x |
|
8 |
|
dihprrn.y |
|
9 |
|
prcom |
|
10 |
|
preq2 |
|
11 |
9 10
|
syl5eq |
|
12 |
11
|
fveq2d |
|
13 |
|
eqid |
|
14 |
1 2 6
|
dvhlmod |
|
15 |
3 13 4 14 8
|
lsppr0 |
|
16 |
12 15
|
sylan9eqr |
|
17 |
1 2 3 4 5
|
dihlsprn |
|
18 |
6 8 17
|
syl2anc |
|
19 |
18
|
adantr |
|
20 |
16 19
|
eqeltrd |
|
21 |
|
preq2 |
|
22 |
21
|
fveq2d |
|
23 |
3 13 4 14 7
|
lsppr0 |
|
24 |
22 23
|
sylan9eqr |
|
25 |
1 2 3 4 5
|
dihlsprn |
|
26 |
6 7 25
|
syl2anc |
|
27 |
26
|
adantr |
|
28 |
24 27
|
eqeltrd |
|
29 |
6
|
adantr |
|
30 |
7
|
adantr |
|
31 |
8
|
adantr |
|
32 |
|
simprl |
|
33 |
|
simprr |
|
34 |
1 2 3 4 5 29 30 31 13 32 33
|
dihprrnlem2 |
|
35 |
20 28 34
|
pm2.61da2ne |
|