Metamath Proof Explorer


Theorem dihprrn

Description: The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihprrn.h H = LHyp K
dihprrn.u U = DVecH K W
dihprrn.v V = Base U
dihprrn.n N = LSpan U
dihprrn.i I = DIsoH K W
dihprrn.k φ K HL W H
dihprrn.x φ X V
dihprrn.y φ Y V
Assertion dihprrn φ N X Y ran I

Proof

Step Hyp Ref Expression
1 dihprrn.h H = LHyp K
2 dihprrn.u U = DVecH K W
3 dihprrn.v V = Base U
4 dihprrn.n N = LSpan U
5 dihprrn.i I = DIsoH K W
6 dihprrn.k φ K HL W H
7 dihprrn.x φ X V
8 dihprrn.y φ Y V
9 prcom X Y = Y X
10 preq2 X = 0 U Y X = Y 0 U
11 9 10 syl5eq X = 0 U X Y = Y 0 U
12 11 fveq2d X = 0 U N X Y = N Y 0 U
13 eqid 0 U = 0 U
14 1 2 6 dvhlmod φ U LMod
15 3 13 4 14 8 lsppr0 φ N Y 0 U = N Y
16 12 15 sylan9eqr φ X = 0 U N X Y = N Y
17 1 2 3 4 5 dihlsprn K HL W H Y V N Y ran I
18 6 8 17 syl2anc φ N Y ran I
19 18 adantr φ X = 0 U N Y ran I
20 16 19 eqeltrd φ X = 0 U N X Y ran I
21 preq2 Y = 0 U X Y = X 0 U
22 21 fveq2d Y = 0 U N X Y = N X 0 U
23 3 13 4 14 7 lsppr0 φ N X 0 U = N X
24 22 23 sylan9eqr φ Y = 0 U N X Y = N X
25 1 2 3 4 5 dihlsprn K HL W H X V N X ran I
26 6 7 25 syl2anc φ N X ran I
27 26 adantr φ Y = 0 U N X ran I
28 24 27 eqeltrd φ Y = 0 U N X Y ran I
29 6 adantr φ X 0 U Y 0 U K HL W H
30 7 adantr φ X 0 U Y 0 U X V
31 8 adantr φ X 0 U Y 0 U Y V
32 simprl φ X 0 U Y 0 U X 0 U
33 simprr φ X 0 U Y 0 U Y 0 U
34 1 2 3 4 5 29 30 31 13 32 33 dihprrnlem2 φ X 0 U Y 0 U N X Y ran I
35 20 28 34 pm2.61da2ne φ N X Y ran I