Metamath Proof Explorer


Theorem dihprrn

Description: The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihprrn.h H=LHypK
dihprrn.u U=DVecHKW
dihprrn.v V=BaseU
dihprrn.n N=LSpanU
dihprrn.i I=DIsoHKW
dihprrn.k φKHLWH
dihprrn.x φXV
dihprrn.y φYV
Assertion dihprrn φNXYranI

Proof

Step Hyp Ref Expression
1 dihprrn.h H=LHypK
2 dihprrn.u U=DVecHKW
3 dihprrn.v V=BaseU
4 dihprrn.n N=LSpanU
5 dihprrn.i I=DIsoHKW
6 dihprrn.k φKHLWH
7 dihprrn.x φXV
8 dihprrn.y φYV
9 prcom XY=YX
10 preq2 X=0UYX=Y0U
11 9 10 eqtrid X=0UXY=Y0U
12 11 fveq2d X=0UNXY=NY0U
13 eqid 0U=0U
14 1 2 6 dvhlmod φULMod
15 3 13 4 14 8 lsppr0 φNY0U=NY
16 12 15 sylan9eqr φX=0UNXY=NY
17 1 2 3 4 5 dihlsprn KHLWHYVNYranI
18 6 8 17 syl2anc φNYranI
19 18 adantr φX=0UNYranI
20 16 19 eqeltrd φX=0UNXYranI
21 preq2 Y=0UXY=X0U
22 21 fveq2d Y=0UNXY=NX0U
23 3 13 4 14 7 lsppr0 φNX0U=NX
24 22 23 sylan9eqr φY=0UNXY=NX
25 1 2 3 4 5 dihlsprn KHLWHXVNXranI
26 6 7 25 syl2anc φNXranI
27 26 adantr φY=0UNXranI
28 24 27 eqeltrd φY=0UNXYranI
29 6 adantr φX0UY0UKHLWH
30 7 adantr φX0UY0UXV
31 8 adantr φX0UY0UYV
32 simprl φX0UY0UX0U
33 simprr φX0UY0UY0U
34 1 2 3 4 5 29 30 31 13 32 33 dihprrnlem2 φX0UY0UNXYranI
35 20 28 34 pm2.61da2ne φNXYranI