Metamath Proof Explorer


Theorem dihvalcqpre

Description: Value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihval.b B=BaseK
dihval.l ˙=K
dihval.j ˙=joinK
dihval.m ˙=meetK
dihval.a A=AtomsK
dihval.h H=LHypK
dihval.i I=DIsoHKW
dihval.d D=DIsoBKW
dihval.c C=DIsoCKW
dihval.u U=DVecHKW
dihval.s S=LSubSpU
dihval.p ˙=LSSumU
Assertion dihvalcqpre KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XIX=CQ˙DX˙W

Proof

Step Hyp Ref Expression
1 dihval.b B=BaseK
2 dihval.l ˙=K
3 dihval.j ˙=joinK
4 dihval.m ˙=meetK
5 dihval.a A=AtomsK
6 dihval.h H=LHypK
7 dihval.i I=DIsoHKW
8 dihval.d D=DIsoBKW
9 dihval.c C=DIsoCKW
10 dihval.u U=DVecHKW
11 dihval.s S=LSubSpU
12 dihval.p ˙=LSSumU
13 11 fvexi SV
14 nfv qKHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=X
15 nfvd KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqIX=CQ˙DX˙W
16 1 2 3 4 5 6 7 8 9 10 11 12 dihvalc KHLWHXB¬X˙WIX=ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
17 16 3adant3 KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XIX=ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
18 eqeq1 Cq˙DX˙W=IXCq˙DX˙W=CQ˙DX˙WIX=CQ˙DX˙W
19 18 adantl KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XCq˙DX˙W=IXCq˙DX˙W=CQ˙DX˙WIX=CQ˙DX˙W
20 simpl1 KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=XKHLWH
21 simprl KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=XqA
22 simprrl KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=X¬q˙W
23 21 22 jca KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=XqA¬q˙W
24 simpl3l KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=XQA¬Q˙W
25 simpl2l KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=XXB
26 simprrr KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=Xq˙X˙W=X
27 simpl3r KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=XQ˙X˙W=X
28 26 27 eqtr4d KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=Xq˙X˙W=Q˙X˙W
29 1 2 3 4 5 6 8 9 10 12 dihjust KHLWHqA¬q˙WQA¬Q˙WXBq˙X˙W=Q˙X˙WCq˙DX˙W=CQ˙DX˙W
30 20 23 24 25 28 29 syl131anc KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=XCq˙DX˙W=CQ˙DX˙W
31 30 ex KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=XCq˙DX˙W=CQ˙DX˙W
32 1 2 3 4 5 6 7 8 9 10 11 12 dihlsscpre KHLWHXB¬X˙WIXS
33 32 3adant3 KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XIXS
34 1 2 3 4 5 6 lhpmcvr2 KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=X
35 34 3adant3 KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XqA¬q˙Wq˙X˙W=X
36 14 15 17 19 31 33 35 riotasv3d KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XSVIX=CQ˙DX˙W
37 13 36 mpan2 KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XIX=CQ˙DX˙W