Metamath Proof Explorer


Theorem disjiund

Description: Conditions for a collection of index unions of sets A ( a , b ) for a e. V and b e. W to be disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjiund.1 a=cA=C
disjiund.2 b=dC=D
disjiund.3 a=cW=X
disjiund.4 φxAxDa=c
Assertion disjiund φDisjaVbWA

Proof

Step Hyp Ref Expression
1 disjiund.1 a=cA=C
2 disjiund.2 b=dC=D
3 disjiund.3 a=cW=X
4 disjiund.4 φxAxDa=c
5 eliun xbWAbWxA
6 eliun xbXCbXxC
7 2 eleq2d b=dxCxD
8 7 cbvrexvw bXxCdXxD
9 4 3exp φxAxDa=c
10 9 rexlimdvw φbWxAxDa=c
11 10 imp φbWxAxDa=c
12 11 rexlimdvw φbWxAdXxDa=c
13 8 12 biimtrid φbWxAbXxCa=c
14 6 13 biimtrid φbWxAxbXCa=c
15 14 con3d φbWxA¬a=c¬xbXC
16 15 impancom φ¬a=cbWxA¬xbXC
17 5 16 biimtrid φ¬a=cxbWA¬xbXC
18 17 ralrimiv φ¬a=cxbWA¬xbXC
19 disj bWAbXC=xbWA¬xbXC
20 18 19 sylibr φ¬a=cbWAbXC=
21 20 ex φ¬a=cbWAbXC=
22 21 orrd φa=cbWAbXC=
23 22 a1d φaVcVa=cbWAbXC=
24 23 ralrimivv φaVcVa=cbWAbXC=
25 3 1 disjiunb DisjaVbWAaVcVa=cbWAbXC=
26 24 25 sylibr φDisjaVbWA