Metamath Proof Explorer


Theorem distgp

Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses distgp.1 B=BaseG
distgp.2 J=TopOpenG
Assertion distgp GGrpJ=𝒫BGTopGrp

Proof

Step Hyp Ref Expression
1 distgp.1 B=BaseG
2 distgp.2 J=TopOpenG
3 simpl GGrpJ=𝒫BGGrp
4 simpr GGrpJ=𝒫BJ=𝒫B
5 1 fvexi BV
6 distopon BV𝒫BTopOnB
7 5 6 ax-mp 𝒫BTopOnB
8 4 7 eqeltrdi GGrpJ=𝒫BJTopOnB
9 1 2 istps GTopSpJTopOnB
10 8 9 sylibr GGrpJ=𝒫BGTopSp
11 eqid -G=-G
12 1 11 grpsubf GGrp-G:B×BB
13 12 adantr GGrpJ=𝒫B-G:B×BB
14 5 5 xpex B×BV
15 5 14 elmap -GBB×B-G:B×BB
16 13 15 sylibr GGrpJ=𝒫B-GBB×B
17 4 4 oveq12d GGrpJ=𝒫BJ×tJ=𝒫B×t𝒫B
18 txdis BVBV𝒫B×t𝒫B=𝒫B×B
19 5 5 18 mp2an 𝒫B×t𝒫B=𝒫B×B
20 17 19 eqtrdi GGrpJ=𝒫BJ×tJ=𝒫B×B
21 20 oveq1d GGrpJ=𝒫BJ×tJCnJ=𝒫B×BCnJ
22 cndis B×BVJTopOnB𝒫B×BCnJ=BB×B
23 14 8 22 sylancr GGrpJ=𝒫B𝒫B×BCnJ=BB×B
24 21 23 eqtrd GGrpJ=𝒫BJ×tJCnJ=BB×B
25 16 24 eleqtrrd GGrpJ=𝒫B-GJ×tJCnJ
26 2 11 istgp2 GTopGrpGGrpGTopSp-GJ×tJCnJ
27 3 10 25 26 syl3anbrc GGrpJ=𝒫BGTopGrp