Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | distgp.1 | |
|
distgp.2 | |
||
Assertion | distgp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distgp.1 | |
|
2 | distgp.2 | |
|
3 | simpl | |
|
4 | simpr | |
|
5 | 1 | fvexi | |
6 | distopon | |
|
7 | 5 6 | ax-mp | |
8 | 4 7 | eqeltrdi | |
9 | 1 2 | istps | |
10 | 8 9 | sylibr | |
11 | eqid | |
|
12 | 1 11 | grpsubf | |
13 | 12 | adantr | |
14 | 5 5 | xpex | |
15 | 5 14 | elmap | |
16 | 13 15 | sylibr | |
17 | 4 4 | oveq12d | |
18 | txdis | |
|
19 | 5 5 18 | mp2an | |
20 | 17 19 | eqtrdi | |
21 | 20 | oveq1d | |
22 | cndis | |
|
23 | 14 8 22 | sylancr | |
24 | 21 23 | eqtrd | |
25 | 16 24 | eleqtrrd | |
26 | 2 11 | istgp2 | |
27 | 3 10 25 26 | syl3anbrc | |