Metamath Proof Explorer


Theorem div2neg

Description: Quotient of two negatives. (Contributed by Paul Chapman, 10-Nov-2012)

Ref Expression
Assertion div2neg ABB0AB=AB

Proof

Step Hyp Ref Expression
1 negcl BB
2 1 3ad2ant2 ABB0B
3 simp1 ABB0A
4 simp2 ABB0B
5 simp3 ABB0B0
6 div12 BABB0BAB=ABB
7 2 3 4 5 6 syl112anc ABB0BAB=ABB
8 divneg BBB0BB=BB
9 4 8 syld3an1 ABB0BB=BB
10 divid BB0BB=1
11 10 3adant1 ABB0BB=1
12 11 negeqd ABB0BB=1
13 9 12 eqtr3d ABB0BB=1
14 13 oveq2d ABB0ABB=A-1
15 ax-1cn 1
16 15 negcli 1
17 mulcom A1A-1=-1A
18 16 17 mpan2 AA-1=-1A
19 mulm1 A-1A=A
20 18 19 eqtrd AA-1=A
21 20 3ad2ant1 ABB0A-1=A
22 14 21 eqtrd ABB0ABB=A
23 7 22 eqtrd ABB0BAB=A
24 negcl AA
25 24 3ad2ant1 ABB0A
26 divcl ABB0AB
27 negeq0 BB=0B=0
28 27 necon3bid BB0B0
29 28 biimpa BB0B0
30 29 3adant1 ABB0B0
31 divmul AABBB0AB=ABBAB=A
32 25 26 2 30 31 syl112anc ABB0AB=ABBAB=A
33 23 32 mpbird ABB0AB=AB