Metamath Proof Explorer


Theorem divalglem6

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses divalglem6.1 A
divalglem6.2 X0A1
divalglem6.3 K
Assertion divalglem6 K0¬X+KA0A1

Proof

Step Hyp Ref Expression
1 divalglem6.1 A
2 divalglem6.2 X0A1
3 divalglem6.3 K
4 3 zrei K
5 0re 0
6 4 5 lttri2i K0K<00<K
7 0z 0
8 1 nnzi A
9 elfzm11 0AX0A1X0XX<A
10 7 8 9 mp2an X0A1X0XX<A
11 2 10 mpbi X0XX<A
12 11 simp3i X<A
13 11 simp1i X
14 13 zrei X
15 1 nnrei A
16 4 15 remulcli KA
17 14 15 16 ltadd1i X<AX+KA<A+KA
18 12 17 mpbi X+KA<A+KA
19 4 renegcli K
20 1 nnnn0i A0
21 20 nn0ge0i 0A
22 lemulge12 AK0A1KAKA
23 22 an4s A0AK1KAKA
24 15 21 23 mpanl12 K1KAKA
25 19 24 mpan 1KAKA
26 lt0neg1 KK<00<K
27 4 26 ax-mp K<00<K
28 znegcl KK
29 3 28 ax-mp K
30 zltp1le 0K0<K0+1K
31 7 29 30 mp2an 0<K0+1K
32 0p1e1 0+1=1
33 32 breq1i 0+1K1K
34 31 33 bitri 0<K1K
35 27 34 bitri K<01K
36 4 recni K
37 15 recni A
38 36 37 mulneg1i KA=KA
39 38 oveq2i AKA=AKA
40 16 recni KA
41 37 40 subnegi AKA=A+KA
42 39 41 eqtri AKA=A+KA
43 42 breq1i AKA0A+KA0
44 19 15 remulcli KA
45 suble0 AKAAKA0AKA
46 15 44 45 mp2an AKA0AKA
47 43 46 bitr3i A+KA0AKA
48 25 35 47 3imtr4i K<0A+KA0
49 14 16 readdcli X+KA
50 15 16 readdcli A+KA
51 49 50 5 ltletri X+KA<A+KAA+KA0X+KA<0
52 18 48 51 sylancr K<0X+KA<0
53 49 5 ltnlei X+KA<0¬0X+KA
54 52 53 sylib K<0¬0X+KA
55 elfzle1 X+KA0A10X+KA
56 54 55 nsyl K<0¬X+KA0A1
57 zltp1le 0K0<K0+1K
58 7 3 57 mp2an 0<K0+1K
59 32 breq1i 0+1K1K
60 58 59 bitri 0<K1K
61 lemulge12 AK0A1KAKA
62 15 4 61 mpanl12 0A1KAKA
63 21 62 mpan 1KAKA
64 60 63 sylbi 0<KAKA
65 11 simp2i 0X
66 addge02 KAX0XKAX+KA
67 16 14 66 mp2an 0XKAX+KA
68 65 67 mpbi KAX+KA
69 15 16 49 letri AKAKAX+KAAX+KA
70 64 68 69 sylancl 0<KAX+KA
71 15 49 lenlti AX+KA¬X+KA<A
72 70 71 sylib 0<K¬X+KA<A
73 elfzm11 0AX+KA0A1X+KA0X+KAX+KA<A
74 7 8 73 mp2an X+KA0A1X+KA0X+KAX+KA<A
75 74 simp3bi X+KA0A1X+KA<A
76 72 75 nsyl 0<K¬X+KA0A1
77 56 76 jaoi K<00<K¬X+KA0A1
78 6 77 sylbi K0¬X+KA0A1