Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
The division algorithm
divalglem6
Next ⟩
divalglem7
Metamath Proof Explorer
Ascii
Unicode
Theorem
divalglem6
Description:
Lemma for
divalg
.
(Contributed by
Paul Chapman
, 21-Mar-2011)
Ref
Expression
Hypotheses
divalglem6.1
⊢
A
∈
ℕ
divalglem6.2
⊢
X
∈
0
…
A
−
1
divalglem6.3
⊢
K
∈
ℤ
Assertion
divalglem6
⊢
K
≠
0
→
¬
X
+
K
A
∈
0
…
A
−
1
Proof
Step
Hyp
Ref
Expression
1
divalglem6.1
⊢
A
∈
ℕ
2
divalglem6.2
⊢
X
∈
0
…
A
−
1
3
divalglem6.3
⊢
K
∈
ℤ
4
3
zrei
⊢
K
∈
ℝ
5
0re
⊢
0
∈
ℝ
6
4
5
lttri2i
⊢
K
≠
0
↔
K
<
0
∨
0
<
K
7
0z
⊢
0
∈
ℤ
8
1
nnzi
⊢
A
∈
ℤ
9
elfzm11
⊢
0
∈
ℤ
∧
A
∈
ℤ
→
X
∈
0
…
A
−
1
↔
X
∈
ℤ
∧
0
≤
X
∧
X
<
A
10
7
8
9
mp2an
⊢
X
∈
0
…
A
−
1
↔
X
∈
ℤ
∧
0
≤
X
∧
X
<
A
11
2
10
mpbi
⊢
X
∈
ℤ
∧
0
≤
X
∧
X
<
A
12
11
simp3i
⊢
X
<
A
13
11
simp1i
⊢
X
∈
ℤ
14
13
zrei
⊢
X
∈
ℝ
15
1
nnrei
⊢
A
∈
ℝ
16
4
15
remulcli
⊢
K
A
∈
ℝ
17
14
15
16
ltadd1i
⊢
X
<
A
↔
X
+
K
A
<
A
+
K
A
18
12
17
mpbi
⊢
X
+
K
A
<
A
+
K
A
19
4
renegcli
⊢
−
K
∈
ℝ
20
1
nnnn0i
⊢
A
∈
ℕ
0
21
20
nn0ge0i
⊢
0
≤
A
22
lemulge12
⊢
A
∈
ℝ
∧
−
K
∈
ℝ
∧
0
≤
A
∧
1
≤
−
K
→
A
≤
−
K
A
23
22
an4s
⊢
A
∈
ℝ
∧
0
≤
A
∧
−
K
∈
ℝ
∧
1
≤
−
K
→
A
≤
−
K
A
24
15
21
23
mpanl12
⊢
−
K
∈
ℝ
∧
1
≤
−
K
→
A
≤
−
K
A
25
19
24
mpan
⊢
1
≤
−
K
→
A
≤
−
K
A
26
lt0neg1
⊢
K
∈
ℝ
→
K
<
0
↔
0
<
−
K
27
4
26
ax-mp
⊢
K
<
0
↔
0
<
−
K
28
znegcl
⊢
K
∈
ℤ
→
−
K
∈
ℤ
29
3
28
ax-mp
⊢
−
K
∈
ℤ
30
zltp1le
⊢
0
∈
ℤ
∧
−
K
∈
ℤ
→
0
<
−
K
↔
0
+
1
≤
−
K
31
7
29
30
mp2an
⊢
0
<
−
K
↔
0
+
1
≤
−
K
32
0p1e1
⊢
0
+
1
=
1
33
32
breq1i
⊢
0
+
1
≤
−
K
↔
1
≤
−
K
34
31
33
bitri
⊢
0
<
−
K
↔
1
≤
−
K
35
27
34
bitri
⊢
K
<
0
↔
1
≤
−
K
36
4
recni
⊢
K
∈
ℂ
37
15
recni
⊢
A
∈
ℂ
38
36
37
mulneg1i
⊢
−
K
A
=
−
K
A
39
38
oveq2i
⊢
A
−
−
K
A
=
A
−
−
K
A
40
16
recni
⊢
K
A
∈
ℂ
41
37
40
subnegi
⊢
A
−
−
K
A
=
A
+
K
A
42
39
41
eqtri
⊢
A
−
−
K
A
=
A
+
K
A
43
42
breq1i
⊢
A
−
−
K
A
≤
0
↔
A
+
K
A
≤
0
44
19
15
remulcli
⊢
−
K
A
∈
ℝ
45
suble0
⊢
A
∈
ℝ
∧
−
K
A
∈
ℝ
→
A
−
−
K
A
≤
0
↔
A
≤
−
K
A
46
15
44
45
mp2an
⊢
A
−
−
K
A
≤
0
↔
A
≤
−
K
A
47
43
46
bitr3i
⊢
A
+
K
A
≤
0
↔
A
≤
−
K
A
48
25
35
47
3imtr4i
⊢
K
<
0
→
A
+
K
A
≤
0
49
14
16
readdcli
⊢
X
+
K
A
∈
ℝ
50
15
16
readdcli
⊢
A
+
K
A
∈
ℝ
51
49
50
5
ltletri
⊢
X
+
K
A
<
A
+
K
A
∧
A
+
K
A
≤
0
→
X
+
K
A
<
0
52
18
48
51
sylancr
⊢
K
<
0
→
X
+
K
A
<
0
53
49
5
ltnlei
⊢
X
+
K
A
<
0
↔
¬
0
≤
X
+
K
A
54
52
53
sylib
⊢
K
<
0
→
¬
0
≤
X
+
K
A
55
elfzle1
⊢
X
+
K
A
∈
0
…
A
−
1
→
0
≤
X
+
K
A
56
54
55
nsyl
⊢
K
<
0
→
¬
X
+
K
A
∈
0
…
A
−
1
57
zltp1le
⊢
0
∈
ℤ
∧
K
∈
ℤ
→
0
<
K
↔
0
+
1
≤
K
58
7
3
57
mp2an
⊢
0
<
K
↔
0
+
1
≤
K
59
32
breq1i
⊢
0
+
1
≤
K
↔
1
≤
K
60
58
59
bitri
⊢
0
<
K
↔
1
≤
K
61
lemulge12
⊢
A
∈
ℝ
∧
K
∈
ℝ
∧
0
≤
A
∧
1
≤
K
→
A
≤
K
A
62
15
4
61
mpanl12
⊢
0
≤
A
∧
1
≤
K
→
A
≤
K
A
63
21
62
mpan
⊢
1
≤
K
→
A
≤
K
A
64
60
63
sylbi
⊢
0
<
K
→
A
≤
K
A
65
11
simp2i
⊢
0
≤
X
66
addge02
⊢
K
A
∈
ℝ
∧
X
∈
ℝ
→
0
≤
X
↔
K
A
≤
X
+
K
A
67
16
14
66
mp2an
⊢
0
≤
X
↔
K
A
≤
X
+
K
A
68
65
67
mpbi
⊢
K
A
≤
X
+
K
A
69
15
16
49
letri
⊢
A
≤
K
A
∧
K
A
≤
X
+
K
A
→
A
≤
X
+
K
A
70
64
68
69
sylancl
⊢
0
<
K
→
A
≤
X
+
K
A
71
15
49
lenlti
⊢
A
≤
X
+
K
A
↔
¬
X
+
K
A
<
A
72
70
71
sylib
⊢
0
<
K
→
¬
X
+
K
A
<
A
73
elfzm11
⊢
0
∈
ℤ
∧
A
∈
ℤ
→
X
+
K
A
∈
0
…
A
−
1
↔
X
+
K
A
∈
ℤ
∧
0
≤
X
+
K
A
∧
X
+
K
A
<
A
74
7
8
73
mp2an
⊢
X
+
K
A
∈
0
…
A
−
1
↔
X
+
K
A
∈
ℤ
∧
0
≤
X
+
K
A
∧
X
+
K
A
<
A
75
74
simp3bi
⊢
X
+
K
A
∈
0
…
A
−
1
→
X
+
K
A
<
A
76
72
75
nsyl
⊢
0
<
K
→
¬
X
+
K
A
∈
0
…
A
−
1
77
56
76
jaoi
⊢
K
<
0
∨
0
<
K
→
¬
X
+
K
A
∈
0
…
A
−
1
78
6
77
sylbi
⊢
K
≠
0
→
¬
X
+
K
A
∈
0
…
A
−
1