| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divcncf.1 |  | 
						
							| 2 |  | divcncf.2 |  | 
						
							| 3 |  | cncff |  | 
						
							| 4 | 1 3 | syl |  | 
						
							| 5 | 4 | fvmptelcdm |  | 
						
							| 6 |  | cncff |  | 
						
							| 7 | 2 6 | syl |  | 
						
							| 8 | 7 | fvmptelcdm |  | 
						
							| 9 | 8 | eldifad |  | 
						
							| 10 |  | eldifsni |  | 
						
							| 11 | 8 10 | syl |  | 
						
							| 12 | 5 9 11 | divrecd |  | 
						
							| 13 | 12 | mpteq2dva |  | 
						
							| 14 | 8 | ralrimiva |  | 
						
							| 15 |  | eqidd |  | 
						
							| 16 |  | eqidd |  | 
						
							| 17 | 14 15 16 | fmptcos |  | 
						
							| 18 |  | csbov2g |  | 
						
							| 19 | 9 18 | syl |  | 
						
							| 20 |  | csbvarg |  | 
						
							| 21 | 9 20 | syl |  | 
						
							| 22 | 21 | oveq2d |  | 
						
							| 23 | 19 22 | eqtrd |  | 
						
							| 24 | 23 | mpteq2dva |  | 
						
							| 25 | 17 24 | eqtr2d |  | 
						
							| 26 |  | ax-1cn |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 27 | cdivcncf |  | 
						
							| 29 | 26 28 | mp1i |  | 
						
							| 30 | 2 29 | cncfco |  | 
						
							| 31 | 25 30 | eqeltrd |  | 
						
							| 32 | 1 31 | mulcncf |  | 
						
							| 33 | 13 32 | eqeltrd |  |