Metamath Proof Explorer


Theorem divcnvshft

Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses divcnvshft.1 Z=M
divcnvshft.2 φM
divcnvshft.3 φA
divcnvshft.4 φB
divcnvshft.5 φFV
divcnvshft.6 φkZFk=Ak+B
Assertion divcnvshft φF0

Proof

Step Hyp Ref Expression
1 divcnvshft.1 Z=M
2 divcnvshft.2 φM
3 divcnvshft.3 φA
4 divcnvshft.4 φB
5 divcnvshft.5 φFV
6 divcnvshft.6 φkZFk=Ak+B
7 divcnv AmAm0
8 3 7 syl φmAm0
9 nnssz
10 resmpt mAm=mAm
11 9 10 ax-mp mAm=mAm
12 nnuz =1
13 12 reseq2i mAm=mAm1
14 11 13 eqtr3i mAm=mAm1
15 14 breq1i mAm0mAm10
16 1z 1
17 zex V
18 17 mptex mAmV
19 climres 1mAmVmAm10mAm0
20 16 18 19 mp2an mAm10mAm0
21 15 20 bitri mAm0mAm0
22 8 21 sylib φmAm0
23 18 a1i φmAmV
24 uzssz M
25 1 24 eqsstri Z
26 25 sseli kZk
27 26 adantl φkZk
28 4 adantr φkZB
29 27 28 zaddcld φkZk+B
30 oveq2 m=k+BAm=Ak+B
31 eqid mAm=mAm
32 ovex Ak+BV
33 30 31 32 fvmpt k+BmAmk+B=Ak+B
34 29 33 syl φkZmAmk+B=Ak+B
35 34 6 eqtr4d φkZmAmk+B=Fk
36 1 2 4 5 23 35 climshft2 φF0mAm0
37 22 36 mpbird φF0