Metamath Proof Explorer


Theorem divlimc

Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses divlimc.f F=xAB
divlimc.g G=xAC
divlimc.h H=xABC
divlimc.b φxAB
divlimc.c φxAC0
divlimc.x φXFlimD
divlimc.y φYGlimD
divlimc.yne0 φY0
divlimc.cne0 φxAC0
Assertion divlimc φXYHlimD

Proof

Step Hyp Ref Expression
1 divlimc.f F=xAB
2 divlimc.g G=xAC
3 divlimc.h H=xABC
4 divlimc.b φxAB
5 divlimc.c φxAC0
6 divlimc.x φXFlimD
7 divlimc.y φYGlimD
8 divlimc.yne0 φY0
9 divlimc.cne0 φxAC0
10 eqid xA1C=xA1C
11 eqid xAB1C=xAB1C
12 5 eldifad φxAC
13 12 9 reccld φxA1C
14 2 10 5 7 8 reclimc φ1YxA1ClimD
15 1 10 11 4 13 6 14 mullimc φX1YxAB1ClimD
16 limccl FlimD
17 16 6 sselid φX
18 limccl GlimD
19 18 7 sselid φY
20 17 19 8 divrecd φXY=X1Y
21 4 12 9 divrecd φxABC=B1C
22 21 mpteq2dva φxABC=xAB1C
23 3 22 eqtrid φH=xAB1C
24 23 oveq1d φHlimD=xAB1ClimD
25 15 20 24 3eltr4d φXYHlimD