| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divlimc.f |  | 
						
							| 2 |  | divlimc.g |  | 
						
							| 3 |  | divlimc.h |  | 
						
							| 4 |  | divlimc.b |  | 
						
							| 5 |  | divlimc.c |  | 
						
							| 6 |  | divlimc.x |  | 
						
							| 7 |  | divlimc.y |  | 
						
							| 8 |  | divlimc.yne0 |  | 
						
							| 9 |  | divlimc.cne0 |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 5 | eldifad |  | 
						
							| 13 | 12 9 | reccld |  | 
						
							| 14 | 2 10 5 7 8 | reclimc |  | 
						
							| 15 | 1 10 11 4 13 6 14 | mullimc |  | 
						
							| 16 |  | limccl |  | 
						
							| 17 | 16 6 | sselid |  | 
						
							| 18 |  | limccl |  | 
						
							| 19 | 18 7 | sselid |  | 
						
							| 20 | 17 19 8 | divrecd |  | 
						
							| 21 | 4 12 9 | divrecd |  | 
						
							| 22 | 21 | mpteq2dva |  | 
						
							| 23 | 3 22 | eqtrid |  | 
						
							| 24 | 23 | oveq1d |  | 
						
							| 25 | 15 20 24 | 3eltr4d |  |