Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divlimc.f | |
|
divlimc.g | |
||
divlimc.h | |
||
divlimc.b | |
||
divlimc.c | |
||
divlimc.x | |
||
divlimc.y | |
||
divlimc.yne0 | |
||
divlimc.cne0 | |
||
Assertion | divlimc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divlimc.f | |
|
2 | divlimc.g | |
|
3 | divlimc.h | |
|
4 | divlimc.b | |
|
5 | divlimc.c | |
|
6 | divlimc.x | |
|
7 | divlimc.y | |
|
8 | divlimc.yne0 | |
|
9 | divlimc.cne0 | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 5 | eldifad | |
13 | 12 9 | reccld | |
14 | 2 10 5 7 8 | reclimc | |
15 | 1 10 11 4 13 6 14 | mullimc | |
16 | limccl | |
|
17 | 16 6 | sselid | |
18 | limccl | |
|
19 | 18 7 | sselid | |
20 | 17 19 8 | divrecd | |
21 | 4 12 9 | divrecd | |
22 | 21 | mpteq2dva | |
23 | 3 22 | eqtrid | |
24 | 23 | oveq1d | |
25 | 15 20 24 | 3eltr4d | |