Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dprdsplit.2 | |
|
dprdsplit.i | |
||
dprdsplit.u | |
||
dmdprdsplit.z | |
||
dmdprdsplit.0 | |
||
Assertion | dmdprdsplit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdsplit.2 | |
|
2 | dprdsplit.i | |
|
3 | dprdsplit.u | |
|
4 | dmdprdsplit.z | |
|
5 | dmdprdsplit.0 | |
|
6 | simpr | |
|
7 | 1 | fdmd | |
8 | 7 | adantr | |
9 | ssun1 | |
|
10 | 3 | adantr | |
11 | 9 10 | sseqtrrid | |
12 | 6 8 11 | dprdres | |
13 | 12 | simpld | |
14 | ssun2 | |
|
15 | 14 10 | sseqtrrid | |
16 | 6 8 15 | dprdres | |
17 | 16 | simpld | |
18 | 13 17 | jca | |
19 | 2 | adantr | |
20 | 6 8 11 15 19 4 | dprdcntz2 | |
21 | 6 8 11 15 19 5 | dprddisj2 | |
22 | 18 20 21 | 3jca | |
23 | 1 | adantr | |
24 | 2 | adantr | |
25 | 3 | adantr | |
26 | simpr1l | |
|
27 | simpr1r | |
|
28 | simpr2 | |
|
29 | simpr3 | |
|
30 | 23 24 25 4 5 26 27 28 29 | dmdprdsplit2 | |
31 | 22 30 | impbida | |